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The critical behavior at a second order phase transition is characterized by the divergence of the
correlation length £ We have studied the superfluid transition of *He in a series of experimental cells in
which this divergence of £ is modified due to finite-size confinement. In particular, the design of these
cells is such that the smallest dimension is kept the same, 1 um, but the geometry is such that one
obtains crossover to dimensionality of 2, 1, and 0. This corresponds to films, channels, and boxes filled
with helium. We measure the specific heat and compare these results with theoretical expectations. We
identify surface and line specific heat contributions by analyzing the deviation of the specific heat from
its behavior in the thermodynamic limit. The design of these cells is made possible by a combination of

silicon lithography and direct wafer bonding.
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The thermodynamic behavior of a system near a sec-
ond order phase transition is well understood [1]. Singu-
larities are observed in a number of thermodynamic
properties. These result from the divergence of the corre-
lation length ¢ as the critical temperature 7. is ap-
proached. This length scale determines the spacial
extent of fluctuations near 7. While all systems studied
are finite in extent, this is not reflected in typical mea-
surements because one does not approach the transition
temperature closely enough for £ to become macroscopic.
For typical systems, ¢ is of the order of 1 um at t =
|1 = T/T.| = 107°. Thus, for samples of much greater
dimensions one obtains behavior which is independent of
their shape or size. One identifies this as the thermo-
dynamic limit, or bulk behavior.

Alternatively, one may ask how a system with dimen-
sions comparable to ¢ reaches the thermodynamic limit
as its small dimensions are increased. This represents an
important problem in statistical mechanics. This limit
can be approached by a confined system in which, at the
simplest, one starts with one, two, or all three spacial
dimensions uniformly small. One expects that, for
equivalent confinements, one should be able to scale the
data with critical exponents which are related to bulk
properties [2]. This expectation is often used theoretically
in calculations on finite systems and extrapolations to the
thermodynamic limit [3]. Finite systems are inherently
shape dependent. Thus, to study them, control of the
confinement geometry is essential. Further, it is necessary
to realize confinement in such a way that walls do not
influence the ordering in an essential way.

The transition of liquid “He from a normal fluid to a
superfluid is ideal in many ways for such a study. The
ordered state is characterized by a macroscopic wave
function, which is often assumed to obey Dirichlet bound-
ary conditions at walls. The local van der Waals field at
the walls provides an inhomogeneity which is relatively
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benign, since it influences the order parameter indirectly
and at most over a limited spacial range. Lastly, the cri-
tical behavior in the thermodynamic limit is very well
known [4]. In the limit in which three or two of the spatial
dimensions of the confined helium are made small, no
sharp critical behavior is expected. On the other hand,
when only one dimension is small, the case of a film, one
expects a Kosterlitz-Thouless (KT) behavior [5]. The
challenge in studying finite-size effects is to achieve uni-
form confinement of the liquid at the wm scale and to
make a high resolution measurement of a relatively small
sample.

To achieve uniform confinement we use a combination
of lithography and direct silicon wafer bonding [6]. A
“cell” consists of two wafers bonded together, thus defin-
ing a specific geometry. We use standard optical lithogra-
phy to pattern SiO, grown on a 5 cm wafer. For planar
confinement (2 dimensional, 2D crossover) we pattern the
oxide with a series of posts 1 um high, and about 1 mm
apart on which the second wafer is then bonded. The posts
maintain a uniform separation between the wafers over
the full volume of the cell. For 1D crossover we pattern
the oxidized wafer with 1 um X 1 um X 4 mm chan-
nels. The experimental cell is tiled with a pattern so
that there is about 0.5 km of channels. For OD crossover
the oxide is patterned with an array of 10° cylindrical
boxes 1 um high by 1 wm diameter. This latter cell is
distinguished from the others by having the top wafer
also patterned with shallow, 18.5 nm high, 1 um wide
lines to fill the boxes [7]. Thus, this cell may be reliably
regarded as a collection of uncoupled boxes [7]. Further
details of our cells can be found in [6,8]. For all cells,
one can deduce the spacing after bonding via a measure-
ment of interference fringes in the infrared. From these,
we deduce that the separation is uniform to better than
10 nm across the area of the wafers. This is much better
than the free-state flatness of these wafers which can have
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variations as large as 10* nm. The uniformity is achieved
by incorporating a substantial stress in the wafers as they
contour to each other in the bonding process.

To measure the specific heat of confined helium, a cell
is staged on a cryostat in such a way as to allow for the
presence of a small amount of bulk helium outside the
wafers. This yields the bulk transition temperature, T),.
The heat capacity of the confined helium is determined
by measuring the amplitude of the temperature oscilla-
tions when the cell is heated with an ac current. This is
done at such a frequency, typically 25—-40 Hz, whereby
the bulk helium, due to its longer relaxation time, does
not contribute to the heat capacity. This was checked
explicitly [8].

Our data for the specific heat of helium in the neigh-
borhood of the maximum are shown in Fig. 1. The insets
of this figure are electron micrographs of the channel and
box geometries. The planar geometry may be viewed
simply as a film 1 pm thick and of infinite lateral extent.
The specific heats behave qualitatively very much as one
might expect. That is, the more one restricts the dimen-
sionality of the system, thereby further limiting critical
fluctuations, the weaker the specific heat maximum be-
comes. Hence the data nest under the solid line, which is
the bulk behavior, with a hierarchy of film, channels, and
then boxes. Note as well that the shift in the specific heat
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FIG. 1 (color). Specific heat near the superfluid transition of
helium confined to a film of thickness L [9], a channel L X L,
and a box L XL X L all with L =1 um. The insets are
scanning electron microscopy images of the patterns showing
the boxes and the channels. For the latter, a wider channel is
shown. This communicates with a filling capillary which
brings helium into the cell.
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maximum also follows the same hierarchy, with the
maximum for the boxes undergoing the largest shift.
The expectation for finite-size behavior is that the
specific heat for a system confined uniformly to a small
dimension L should obey a scaling form which can be
cast in several ways [10]. In particular, one may write

[C(t,00) — C(1, L)]t* = ACt* = g,(x), (1)

where 1 = |1 — T/T,|. The variable x is tL'/”. The ex-
ponents, « = —0.0115 and v = 0.6705, characterize the
singularity in the bulk specific heat C, ~7* and the
divergence of the correlation length & ~ ¢~”. These ex-
ponents [11] are well established in helium and are related
via the hyperscaling relation 3v + @ = 2. The scaling
variable, apart from a constant, is simply (L/&)"/".
An alternative way of representing the data is as [12]

[C(t, L) — C(ty, 0)IL™/" = f,(x), )

where £, is the temperature at which ¢ = L. These two
functions are equivalent, but their different forms are
useful because they emphasize different features of the
specific heat.

Another approach in describing a finite system is to
consider how, in a region where &/L is small (far from the
transition), it might begin to deviate from bulk behavior.
This may be expressed as being due to topological aspects
of the confining geometry, such as corners, edges, and
surfaces [3]. The edge (e) and surface (s) contributions to
the full scaling function may be written, respectively, as
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These are the dominant contributions in the edge and
surface regions of the scaling plots. The surface and edge
expressions no longer apply if 7L'/” becomes small. They
are part of the crossover behavior contained in the full
scaling function. This differs for each type of confine-
ment. For Egs. (3) and (4) to be functions of £/L, one must
have ay,=a + v and a, = a + 2v. The amplitude for the
surface specific heat, A;, has been calculated recently
[13]. The amplitude for the edge specific heat, A,, is
unknown and, as far as we are aware, has never been
measured for a critical system. These amplitudes are in-
dependent of the geometry. The constants g, and g, how-
ever, do depend, respectively, on the surface to volume
and edge to volume ratios for a particular geometry. In our
case, for films, channels, and boxes g, is 2, 4, and 6, re-
spectively. Similarly, for g, one has 0, 4, and 8g,. This g,
which is between 0.5 and 1, reflects the uncertainty in the
alignment of the filling lines relative to the boxes.
According to Eq. (4) one expects the surface contribution
between the three geometries to be in the ratio of 1:2:3.
In Fig. 2 we show data for T > T, plotted as ACt* ver-
sus the scaling variable 7L'/”. For the planar confinement
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we use the results of Ref. [9] (see also Ref. [14]) which
comprises a series of measurements for various planar
confinements which were shown to display universal data
collapse. To calculate AC we use the bulk specific heat
representation obtained in Ref. [8]. The measured heat
capacity is normalized to the bulk data in the region above
T, where finite-size effects are negligible, = 1072. The
trend in the data in Fig. 2 shows the behavior expected
from Egs. (1), (3), and (4). At large L7, the channel and
boxes data show the effect of the edge specific heat: ACr®
is consistent with a power-law behavior of —2v, the solid
lines. At intermediate rL'/”, the surface specific heat
dominates, hence the exponent is —v, the dashed lines.
For smaller 7L'/*, one picks up the full finite-size effects
as ACt* “rolls over” to a much weaker temperature
dependence. The data for 2D confinement have a well-
defined region where the surface specific heat dominates
(there are no edge effects for this geometry), while the
boxes and channels have at best a transition region be-
tween the edge specific heat and the fully developed
finite-size effects. One can contrast the behavior of the
present 1D data to those with a cylindrical geometry [15].
For the latter, the surface specific heat region extends to
tL'/” = 10*, with no evidence of a change in power law.
This is expected, long cylinders have a negligible edge
contribution which comes from its ends; thus, one can
take g, = 0.

The equivalent plot for the region T < T, is shown in
Fig. 3. Here the data show more structure because of the
specific heat maximum. In particular one notes that the
data for 2D confinement have a very striking minimum
on this plot compared with more subtle changes of cur-
vature for the 1D and OD confinements. It seems likely

1025

L=1um
oD
1D
2D

-
A

-
(=]
©

ACt* (J/mol K)

-
e
A

102

107 10° 10" 10? 10° 10°

"_1/v

FIG. 2. The difference in the specific heat of confined helium
from the bulk for T > T, plotted according to Eq. (1). The solid
lines for large values of ¢L'/” indicate the behavior of the edge
specific heat. The dashed lines, at intermediate tLY? indicate
the behavior of the surface specific heat. For small L/” the full
effect of confinement is manifest. L is in A.

115301-3

that this difference for 2D is a reflection of KT behavior.
Also drawn on this plot are lines corresponding to the
behavior of the surface and edge specific heats. The data
for 1D confinement could not be obtained into the edge
region because of the onset of a superfluid resonance.
Also, as an inset in Fig. 3, we show a comparison of the
1D data with a Monte Carlo calculation of f;(x) [16].
The theory is in good agreement with the data except near
the specific heat maximum. Here the theory exceeds the
maximum indicating that it does not capture the full
import of confinement. In a similar comparison for 2D
confinement, the theoretical maximum also exceeds the
locus of the data [9]. A field theory calculation of A for
planar confinement is shown as a dashed line [13]. For the
channel and box geometries one would position this line,
respectively, a factor of 2 and 3 higher. In all cases this
line lies below the respective data. By contrast, above T,
one has excellent agreement with theory [9,14]; see Table L.
We have also compared the OD data with recent
Monte Carlo calculations [17]. Excellent agreement is
found for temperatures above the specific heat maximum.
To compare the magnitude of the surface and edge
specific heat we have collected in Table I values of A",
A7, A}, and A, , as well as the overall prefactor ratios for
various geometries. The +, — refer to T > T) and T <
T,, respectively. The amplitudes, which are independent
of geometry, can be compared with theory where avail-
able. The ratios of the prefactors should yield the expected
geometric ratios. One can see from this Table that these
ratios are in agreement with expectations except for some

w* T T T TTTTT T T T TTTTT T IIIHH[ T T T
L +¥ L=1um i
m D
L |

: % iy o 1D ||
10°F Q!@:ﬂ + E
Fio—r—T—Tt—1——— E 4 Owm | |7 Cg (Rel. 13) E

L Mcnte Carlo (Ret. 16)|

_.
(=]
3
e
[ & ™

ACH* (J/mol K)

[ EEET]

10

T<Tx

T T T T

-60 -40 -R0 0 20
R
L1 11l

[ ERET L1111l L1l

102
10" 10° 10’ 10? 10°
tL1/\r

FIG. 3 (color online). The difference in the specific heat of
confined helium from the bulk for 7 < T, plotted according to
Eq. (1). L is in A. The solid lines through the data are drawn
with slopes corresponding to the surface and edge specific heat,
Eqgs. (3) and (4). The dashed line is a theoretical prediction for
the surface region. The inset shows the data, plotted according
to Eq. (2), for the channel geometry compared with a theoreti-
cal calculation for the same geometry. For the inset the reduced
temperature is taken as negative for the region below T,.
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TABLE I Specific heat amplitudes and ratios for surface and edge specific heats. A, and A, are in units of J A/molK and
J A2/mol K, respectively. The numbers in parentheses are the expected ratios for the geometric factors.
Surface: T > T, Surface: T <T), Edge: T > T, Edge: T<T,

Channel/planar 1.5 +0.1 2.0+0.1

2 €5
Box/planar 2.1x0.1 2.7+0.2

3 3
Box/channel 1.4 +0.1 1.3 £0.1 1.8 0.2

(1.5) (1.5) (1-2)
Amplitude Af =-59+02 Ay = —-86=*0.5 A} = =370 = 40 A, = —1100 = 110
(Exp.)
Amplitude Af =57 Ay =20
(Theory)

of the surface terms for T > T,. Here the ratios
channel/planar and box/planar are shy of the expected
values 1.5 = 0.2 vs 2, and 2.1 = 0.1 vs 3. It seems likely
that this is a reflection of the rather limited region in
which the surface term is manifest for the box and chan-
nel geometries. The magnitude of A is in excellent
agreement with theoretical calculations, as has already
been pointed out in [9,14]. For Ay however, there is a
strong disagreement with theory. This is true for 2D, 1D,
and 0D confinements. While the theoretical values of A;
are from a first order calculation and are not expected to
be very accurate [13], it is nevertheless interesting that it
is on the superfluid side that one finds disagreement. This
is also the region, at least for 2D, where one finds the data
for various L’s do not scale [9]. The edge amplitudes have
not been calculated theoretically for a system such as
helium. We believe these are the first measurements near
a critical point to identify such a contribution.

In summary, we have presented data of the specific heat
of helium confined at the same smallest dimension but
with different dimensionality crossover. This demon-
strates for the first time the role of the lower dimension
for the same small confinement L. We have also identified
surface, and for the first time, edge contributions to
finite-size effects. Comparison with theory shows agree-
ment in some aspects and disagreement in others.
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