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Observation of Optical Spatial Solitons in a Highly Nonlocal Medium
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We report on the observation and quantitative assessment of self-trapped pulsating beams in a highly
nonlocal nonlinear regime. The experiments were conducted in nematic liquid crystals and allow a
meaningful comparison with the prediction of a scalar theory in the perturbative limit, while
addressing the need for beyond-paraxial analytical treatments.
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with a significant degree of molecular order and birefrin-
gence under appropriate anchoring [10–12]. 4Kr2
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Several remarkable nonlinear physical phenomena may
be classified as solitons, or solitary waves. Among the
most famous is ‘‘the great [water] wave of translation,’’
originally reported by Russell and considered the first
documented observation of solitons [1]. A fundamental
characteristic unifies soliton phenomena: the discreteness
arising in the framework of continuous fields (such as in
electrodynamics and fluid dynamics). From a mathemati-
cal viewpoint, solitons are solutions of specific differ-
ential equations which are nonlinear and integrable. In
general, however, nonlinear waves which keep a distinc-
tive and unchanged identity along their propagation may
be considered solitons, or solitary waves (SW), even
when they are described by nonintegrable systems [2].
In the applied nonlinear optics community such a dis-
tinction is often set aside [3], as it is in this work.

Several approaches have been available to model SW:
from heavy computations to sophisticated analytic trans-
forms. More recently, a simple theoretical model was
advanced which describes complex solitonlike dynamics
and has direct relevance to the novel beam propagation
we present here. In particular, Snyder and Mitchell de-
scribed the propagation of optical spatial solitary waves
(i.e., nondiffracting light beams which self-trap owing
to the nonlinearity) in a highly nonlocal nonlinear me-
dium (HNNM), i.e., a medium (described by an integro-
differential constitutive relationship in the spatial
coordinates) in which the optical field modifies the index
of refraction in a kernel region much larger than the
beam waist [4]. The model in Ref. [4], however, was
attributed a limited practical relevance, mainly because
of the apparent lack of a physical medium (i.e., an
HNNM) able to support such solitons. Nevertheless, non-
local media with a nonlinear response have been experi-
mentally investigated to outline their specific features in
relation to light localization and optical solitons, and
among them atomic gases [5], photorefractive and liquid
crystals (LC) [6–12]. Photorefractives are highly aniso-
tropic crystals with a finite degree of nonlocality due to
carrier drift and diffusion [6–9], while LC are liquids
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In recent years, spatial optical solitons have been ob-
served in a variety of nonlinear media and have attracted
considerable interest for their potential applications to
signal processing and communications [3,13,14]. Such
observations were mostly carried out in materials effec-
tively described in terms of a local response (where the
relation between the field and the induced nonlinear po-
larization can be taken as punctual), i.e., cubic, quadratic,
or photorefractive [15].

In this Letter, after showing theoretically that a highly
nonlocal response is appropriate to describe light propa-
gation in nematic LC, in such HNNM we experimentally
investigate nonlocal optical solitons and carry out a
quantitative comparison with the model. Their features
strongly differ from those of self-trapped beams in local
media, and we trust that the results presented hereby are
relevant in all those fields where nonlocality cannot be
neglected and a local picture fails; among them, Bose-
Einstein condensation [16] and plasmas [17] are worth
mentioning. Not only is understanding the interplay be-
tween nonlocality and nonlinearity fundamentally im-
portant, but it also leads to intriguing applications of
spatial solitons: for instance, the recently demonstrated
nontrivial logic gates based on nonlocal interactions be-
tween optical SW [18].

Theory.—With reference to the highly nonlocal re-
gime, while the theory developed in Ref. [4] provides
insight and general guidelines on the dynamics of spatial
solitons in HNNM, a more specialized description is
required to model the response of a particular medium
such as a nematic LC.

The experimental geometry of our nematic liquid crys-
tal cell for planar orientation is sketched in Fig. 1. With
proper anchoring boundaries, the molecular director
��x; y; z� distribution can be initially adjusted to a back-
ground value by an externally applied low-frequency
voltage [19]. By setting �0�x; y; z� � �0 � �=4 with re-
spect to the linear spatial polarization of an incoming
light beam, in the paraxial approximation using standard
expressions for LC [10] at the first order, from
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FIG. 1. (a) Experimental setup: a 75 �m thick (along x)
planarly aligned nematic LC cell is voltage biased via thin-
film electrodes. A light beam impinges from the left and
propagates along z. A CCD camera with a microscope monitors
the beam evolution along y and z by acquiring images of
the scattered light from the top. (b) The photo of a typical
pulsating soliton. (c) Plot of relative error e � �measured 	
actual�=�actual� in evaluating the beam waist from the scattered
light, as modeled by a Gaussian blur. The cell thickness is
much larger than the beam, justifying the radial symmetry
assumption.
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for finite radial distances from the beam axis (in r � 0), it
stems that the dipole-induced perturbation is much wider
that the beam itself, with
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where �� is a small (��
 �0) optically induced correc-
tion to the background value �0 of the director angle, r is
the cylindrical radial coordinate, "0 is the vacuum per-
mittivity, andE is the electric field amplitude in the beam.
K is the LC elastic constant (conveniently taken equal for
splay, bend, and twist of the molecules) and n2a � �" �
n2
k
	 n2? is the dielectric anisotropy, i.e., the difference

between the permittivities along the two principal axes of
the LC ellipsoidal molecule (for the liquid crystal E7,
K � 1:5� 10	11N, na � 0:6). The director distribution
Eq. (2) relates to a likely HNNM, although it should not
be extended to large r, where it clearly becomes unphys-
ical. From
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which describes the propagation of a linearly x-polarized
light wave in a perturbed director field [n��� �

nkn?=
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], about �0 � �=4 the

Foch-Leontovich equation for the beam envelope in the
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limit of a thick cell reads
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k � 2�n��0�=� being the propagation constant, � the
wavelength (we take � � 1:064 �m), and n��0� the back-
ground refractive index [n��=4� � 1:6]. Equation (4) de-
scribes the reorientational nonlinearity of LC and
supports a Gaussian solution with a waist W�z� (in inten-
sity) periodically varying along the propagation distance.
While coupled equations (1) and (3) can be used for
numerical analysis of the phenomenon, (4) is a rough
model indicating the trends of measurable quantities in
our experiments. Its solution can be found by writing E �
E0 expiQ�z� � ikr2=2q�z��. As js�z�j2 � �E0=jEj�2, q �
s=s0, and Q0 � 1=q, the complex parameter s�z� obeys
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which, for a flat-phase Gaussian input, can be reduced to
the equation of a normalized nonlinear one-dimensional
oscillator, with position � � jsj2

������������
P=PS

p
in a paraboliclike

potential: ��� � 	@U=@�, U � ln��� � 1=2�2 (dots de-
note derivatives with respect to a normalized propagation
coordinate), with ��0� �

������������
P=PS

p
and _���0� � 0.

An alternative insightful (albeit less rigorous) way to
solve Eq. (4) consists in looking for transverse-localized
waves, in the hypothesis that the optical beam is nearly
trapped, i.e., jE�r � 0; z�j2 is almost z independent. In
essence, the on-axis intensity dependence is reduced to
a power-dependent term (for a Gaussian solution this is
self-consistent), as in Ref. [4]. This approximation to the
full dynamics encompassed by coupled equations (1) and
(3) accounts for the specific material constants and pro-
vides beam evolution laws in analogy to those in Ref. [4]:
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Hence, W�z� oscillates with period �, and W0 an initial
reference value. P is the optical power, c is the light
velocity in vacuum, and PS � 2�2Kcn=��n4aW

2
0 � is the

soliton power.
Thus, the beam generally undergoes nonlinear oscilla-

tions, their entity determined by the ratio between the
input and the soliton power. The latter fixes the initial
position of the particle in the bell-shaped potential. When
P � Ps the particle is initially settled in the stationary
point; hence, it remains still with z, corresponding to an
exact soliton excitation. Our treatment above corresponds
to assume jsj � 1; hence, it holds for excitations around
the soliton value (P � PS) and enables one to deal with
explicit expressions.

Equation (6), in qualitative agreement with Ref. [4],
will be used to interpret the experiments.
113902-2



FIG. 2. Measured SW waist versus propagation distance for
various excitation powers Pin.
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The dimensionless constant  (i.e., the harmonic con-
tent of the soliton) identifies various self-trapping re-
gimes. For  > 0 the beam diffracts at first before it
starts to periodically pulsate, while for  < 0 it initially
self-focuses. � grows linearly withW0 and inversely with
the square root of the power, because self-trapping stems
from a balance between diffraction and self-focusing: the
natural tendency of a beam to spread, stronger whenW0 is
smaller, is overcome by the power-dependent response. In
the case  � 0 (i.e., P � PS) nonlinearity exactly coun-
teracts diffraction and the beam travels unmodified along
z. Therefore, (for P � Ps) we can state that spatial sol-
itons in highly nonlocal media are pulsating beams.

The previous result can also be interpreted by observ-
ing that, according to Eq. (4), the LC system behaves as a
graded-index (GRIN) lens with pitch depending not on
beam waist, but on beam peak intensity [or power in the
limit of Eq. (6)]. This agrees with the definition of an
HNNM: the field intensity in a point modifies the me-
dium in a region much larger that the beam spot. When
the spot size is very small, the beam does not sense the
GRIN and widens, until its waist gets large enough for the
lens to become effective. Then it starts focusing, and the
process repeats itself in a cyclic fashion. Note that, de-
spite the specific material setting (LC exhibiting a reor-
ientational response which is far from saturation) and
within the paraxial frame, the general SW trend in an
HNNM qualitatively resembles the case of a (logarith-
mic) saturable nonlinearity [20].

The nonlocal nonlinearity is able to trap intense and
narrow-waist solitary beams. By looking at Eq. (6), we
note that when  > 0 ( < 0) the maximum (minimum)
of W2 depends only on material parameters and the
power:

W2
M �

2�2Kcn

�n4aP
; (7)

i.e., there is no lower (upper) bound to its minimum
(maximum) W0. Although derived within the limit of
validity of Eq. (6), the oscillating behavior is the main
difference between our HNNM and other responses (such
as photorefractive, saturable Kerr, or quadratic) in sys-
tems where the SW waist is a constant determined by the
light intensity (left aside the internal modes of a soliton).
Note that Eq. (7) can be recast as

PW2
M � PsW

2
0 ; (8)

with the product PsW2
0 � 2�2Kcn=�n4a depending on

material parameters and wavelength. Equation (8) is the
existence curve for stationary nonlocal solitons.

Experimental results.—Figure 2 shows the measured
waist versus z, as obtained by analyzing snapshots of
the light scattered above the LC cell when SW at � �
1:064 �m were launched. Starting at low powers ( > 0),
the oscillations progressively reduce in amplitude and
their period decreases as the excitation goes up. This is
in good qualitative agreement with the prediction in
Eq. (6), but the experimental accuracy is inherently lim-
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ited by the acquisition of scattered photons from the SW.
To account for this, we modeled our imaging system as a
blur, convolving the retrieved intensity profiles with a
Gaussian kernel (G). The kernel width was evaluated
from the linear diffraction of a known beam, resulting
in G�y� � exp	y2=�4 �m�2�. Because of the blur, actual
5 �m waist results were overestimated by about 50%,
but the error is larger than 100% for waists <1 �m.
Conversely, if the waist is > 10 �m, the error is under
10% (see Fig. 1, lower right). Henceforth, we carried out
the quantitative comparison with the theory considering
only the maximum waist [from Eq. (7)] and the oscilla-
tion period [from Eq. (6)], the latter taken as twice the
separation between the first two extrema in the graph of
waist versus z (Fig. 2).

Figure 3(a) displays the measured maximum SW waist
versus power. The best fit is obtained from Eq. (7) by
introducing as a parameter the coupling efficiency & of
the laser power Pin into the soliton-trapped power P (i.e.,
& � P=Pin). By minimizing the standard deviation, we
found & � 7%. To further the comparison, Fig. 3(b)
shows a plot of 1=max�W2� versus P. The overall linear-
ity is satisfactory and the standard deviation from the
model is 4%. Figure 3(c) graphs period versus power and
the best fit from Eq. (6). Given the previously evaluated &,
here the fitting parameter is the minimum waist, yielding
W0 � 1 �m. While the latter could not be determined
a priori, because light enters the sample through the
interface and an LC transition layer, such a wavelength-
size estimate stems from a paraxial model and should,
therefore, be taken as the indication of its inherent limit.
Finally, in Fig. 3(d) the quantity 1=�2 is plotted versus P.
Once more, there is good agreement with the calculation,
and the standard deviation is 7%. The overall comparison
between data and model is marginally affected by the
limited experimental accuracy; however, it emerges
clearly that we observed self-trapped optical beams in
a HNNM. Finally, it is well worth underlining that
an additional feature of spatial solitons in HNNM is
their collisional behavior, as predicted in Refs. [4,21].
Indeed, the recently demonstrated incoherentlike and
attractive interactions between SW in the same LC pro-
vide an independent proof of their highly nonlocal dy-
namics [22].

A corollary of our model Eq. (6) is that the mini-
mum waist of the oscillating SW directly relates to its
113902-3



FIG. 3. Observation of accessible solitons: (a) maximum
waist versus power; (b) inverse square of waist vs power;
(c) period vs power (error bars are negligibly small);
(d) inverse square of waist vs period. The solid lines are best
fits from the theory.

P H Y S I C A L R E V I E W L E T T E R S week ending
19 MARCH 2004VOLUME 92, NUMBER 11
maximum waist and period. However, since such a mini-
mum is estimated comparable to the light wavelength in
the medium (�=n � 0:68 �m) and the experimental data
are masked by scattering, based on the paraxial approach
[Eqs. (4) and (5)] and the small-oscillation approximation
[Eq. (6)] above, we can state only that W0 is rather small.
While a vectorial treatment (e.g., Ref. [23]) is needed
when dealing with a nonparaxiality figure C �
�=�nW0� � 4�2WM=� close to unity, to circumvent the
limits of our linearized analysis leading to Eq. (6) we
resorted to a numerical study of light propagation while
solving the basic equations (1) and (3) for the nonlinear
response of our voltage-biased LC cell. The study, carried
out with a split-step beam propagator in the paraxial
regime, confirms that the SW undergoes oscillations in
waist and intensity (up to one order of magnitude), with
minimum values of the order of 1 �m. The numerical
results ratify the widely oscillating character of the SWas
observed in LC and prompt for a nonparaxial vectorial
theory. The latter will be considered elsewhere.

Conclusions.—Our investigation of an HNNM, em-
ploying the nematic liquid crystal E7 in the near infrared,
demonstrates that highly nonlocal solitons can be excited
and propagate as pulsating beams. In spite of the inherent
limits of a paraxial analysis in the small-oscillation ap-
proximation, the model and the comparison with data
indicate that the beam dynamics is primarily determined
by the ratio between input and soliton power, with propa-
gation of narrow-waist SW. The inferred nonparaxiality
C, in fact, is more than one order of magnitude larger than
for self-trapped beams in photorefractive and frequency-
doubling crystals. In conclusion, not only can nematic LC
be regarded as HNNM and sustain highly nonlocal
solitary waves, but they also prompt for the development
113902-4
of nonparaxial nonlinear models in optical soliton
propagation.
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