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Phase Transitions Driven by State-Dependent Poisson Noise
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Nonlinear systems driven by state-dependent Poisson noise are introduced to model the persistence of
climatic anomalies in land-atmosphere interaction caused by the soil-moisture dependence of the
frequency of rainfall events. It is found that these systems may give rise to bimodal probability
distributions, while the state variable randomly persists around the preferential states because of
transient dynamics that are opposite to the long-term behavior. Mean-field analysis and numerical
simulations of the spatially distributed systems reveal a symmetry-breaking bifurcation for sufficiently
strong spatial diffusive couplings and intermediate noise intensities. In such conditions, the initial
development of spatial patterns is followed by a stable configuration, selected on the bases of the initial
conditions in correspondence of the remnants of the modes of the uncoupled system.
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takes place according to a nonhomogeneous Poisson pro- state dependence of the noise previously investigated is
Noises acting on nonlinear systems can be a source of
new phenomena which may qualitatively change the sys-
tem behavior, eliciting the appearance of bimodality in
the steady-state probability density function (pdf), induc-
ing temporal persistence around preferential states, and
favoring developments of spatial patterns and symmetry-
breaking bifurcations in spatially distributed systems
[1–5]. These theoretical findings have provided impor-
tant applications in physics, engineering, and natural
sciences [1,2,5–7].

While the picture is relatively clear for Gaussian noise,
the role of other forms of noise has been less investigated.
In particular, the case of state-dependent jump (Poisson)
noise apparently has never been studied in detail in rela-
tion to noise-induced phase transitions. Building upon
previous analyses on systems driven by marked Poisson
noise [8–14], in which both the jumps and their times of
occurrence are random, here we analyze the effect of a
state dependence of the noise, especially in terms of the
frequency of jumps. As will be seen, the problem is
foreboding of rich dynamical behaviors with possible
applications in the theory of queues and stochastic reser-
voirs [10,15] and, especially, in the problem of land-
atmosphere interaction [7,12,16].

Consider the stochastic differential equation

ds
dt

� ���s� � F�t; s�; (1)

where ��s� is a deterministic function of s and F�t; s� is a
state-dependent marked Poisson noise

F�t; s� �
X
i

yi	�t� ti�; (2)

where 	��� is the Dirac delta function and the random
times {tig form a point process whose sequence of events
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cess [17], with state-dependent instantaneous rate 
�s�t�	.
The random jumps yi are described by a state-dependent
distribution b�y; s�, that gives the probability of jumps of
size y starting from the state s. The case of a multi-
plicative function g�s� acting on the noise term F�t; s�
can be brought back to Eq. (1) by changing the jump size
to zi � g�s�yi, with distribution b0�z; s� � b�y=g�s�; s	=
g�s�; thus for an original exponential distribution b�y�
with mean 1=��s�, the new distribution b0�y� is still ex-
ponential with mean ���s�g�s�	�1.

In a spatially lumped description of the terrestrial
water balance at the daily time scale, s would represent
the relative soil moisture of the active soil layer (i.e., the
root zone), ��s� the losses due to evapotranspiration and
deep infiltration during interstorm periods, and F�t� the
jumps in soil moisture by rainfall events. The latter ones
may be assumed to partly depend on s because of the
so-called precipitation recycling and land-atmosphere
interaction. In what follows, having the stochastic soil-
moisture dynamics in mind, we will focus on cases where
both the deterministic function ��s� and the jumps yi are
positive and the process is bounded between 0 and 1. The
lower bound at zero is imposed by requiring ��0� � 0,
while the upper bound is ensured by limiting the jumps at
s � 1 by means of a Dirac delta function at 1� s in the
jump distribution [12,13]. Accordingly, an (unbounded)
exponential jump distribution with constant mean 1=�
becomes

b�y; s� � �e��y � 	�y� 1� s�
Z 1

1�s
�e��udu; (3)

for 0< y � 1� s. This form will be used in what follows.
While [8–13] have studied in detail the steady-state

properties of the homogenous case (i.e., with parameters
of the Poisson noise independent of s), the only form of
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FIG. 1. Nonhomogeneous Takacs process (a � 0:1, b � 0:3,
� � 0:0125, � � 20). Top: Example of time series.
Bottom: Continuous part of the steady-state pdf (left) and
initial slope of the mean trajectory, Eq. (9), as a function of
s0 (right).

P H Y S I C A L R E V I E W L E T T E R S week ending
19 MARCH 2004VOLUME 92, NUMBER 11
the upper bound in the jump distribution, introduced in
[12,13] to account for the saturation conditions in the
stochastic soil-moisture dynamics. Here we show that
the nonhomogenous problem, yet remaining amenable
of analytical developments, may give rise to noise-
induced phase transitions. These are qualitatively differ-
ent from those found for special forms of ��s� in [14],
where the bimodality was a mere static effect.

Similarly to the case of homogeneous Poisson noise
[8–12], the forward Chapman-Kolmogorov equation for
state-dependent noise can be written as

@p�s; t�
@t

�
@
@s

�p�s; t���s�	 � 
�s�p�s; t�

�
Z s

0

�z�p�z; t�b�s� z; z�dz; (4)

where p�s; t� is the time-dependent pdf of s [18]. A
relatively simple solution of (4) is possible for steady-
state conditions, i.e.,

p�s� �
C

��s�
e��s�

R
s
�
�u�=��u�	du; (5)

where C is a normalization constant. Interestingly, the
form of Eq. (4) is the same as that of the homogeneous
case (
 � const) [9,10] and does not depend on the pres-
ence of the upper bound, whose effects thus remain en-
tirely embedded in the normalization constant [12,13].

A simple explicit solution for which the appearance
of preferential states can be analyzed in detail is offered
by the nonhomogeneous Takacs process [8], i.e., with
linear decay, ��s� � � � const, bounded between 0 and
1 and with rate of arrival linearly dependent on s, 
�s� �
a� bs. In this case, the steady-state distribution is a
mixed one [8,13,18] with an atom of probability at zero,

p�s� � C
�
1

�
e�����a=��	s��b=2��s2 �

	�s�
a

�
; (6)

with

C �
1

1
a �

�������
�

2b�

q
e��2

�Erfi��� b� � Erfi���	
; (7)

where � � �a� ���=
���������
2b�

p
and Erfi��� is the imaginary

error function [19]. Figure 1 shows a plot of the pdf of s:
when b � 0, the continuous part of the pdf can be bi-
modal, with modes at s � 0 and s � 1. The existence of
these preferential states is observed in the time series of s
(Fig. 1). Notice that in the hydrologic interpretation this
would imply a persistence of dry and wet states in the
dynamics of the terrestrial water balance.

The initial transient of the mean trajectory plays an
important role in the developments of noise-induced
phase transitions [4]. In the present case, the so-called
macroscopic equation for the temporal evolution of the
mean, hs�t�i, can be derived from (4) as [20,21]
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dhs�t�i
dt

�
h
�s�i
�

� h��s�i

�
1

�

Z 1

0

�z�p�z; t�e���1�z�dz: (8)

Assuming p�s; t � 0� � 	�s� s0�, the slope of the mean
trajectory starting from s0 is found to be

dhs�t�i
dt

�������s�s0

� ���s0� �

�s0�
�

�1� e���1�s0�	: (9)

This is plotted in Fig. 1 for the nonhomogeneous Takacs
process: the destabilizing action of the noise in some
parts of the s domain is clearly evident.

Following [3,4], the analysis may be extended to a
spatially distributed model with diffusive coupling, in
which the scalar variable sr is assumed to evolve over a
d-dimensional cubic lattice according to

dsr
dt

� Fr�t; sr� � ��sr� �
D
2d

X
r02n�r�

�sr0 � sr�; (10)

where r is the vector determining the position of the
lattice point, n�r� is the set of 2d cells neighbor of r,
and D is a diffusion coefficient. The noise terms for each
site, F�t; sr�, are given by (2) and assumed to be spatially
uncorrelated, while ��sr� is the same deterministic func-
tion for all sites.

Noticing that, once ��s� is replaced by ��sr� �
�D=2d�

P
r02n�r��sr0 � sr�, Eq. (10) is the same as Eq. (1),

the multivariate steady-state pdf can be obtained from (5)
by substituting ��s� with ��sr� �D�sr � E�sr�	, where
E�y� � hsr0 jsr � yi is the steady-state conditional average
of s in the neighborhood of lattice point r, given that sr �
y. As noticed in [4], this is an exact result, but E�y� is
unknown. A useful approximation can be obtained by
resorting to the Weiss’s mean-field hypothesis (e.g., [4],
and references therein), which consists in neglecting the
110601-2



FIG. 2. Mean field hypothesis for the nonhomogeneous
Takacs process (a � 0:1, b � 0:3, � � 0:0125, � � 20).
Top: solutions of the self-consistency equation, Eq. (11), as a
function of the diffusion coefficient. Bottom: corresponding
examples of the continuous part of the steady-state spatial
pdf ’s (the dashed line refers to case I).

FIG. 3. Nonhomogeneous Takacs process. Left: solutions of
the self-consistency equation, Eq. (11), as a function of the
noise intensity. The latter, which is equal to 
�s�=�, is varied by
changing a while keeping b, �, and a=� constant (b � 0:3,
� � 20, a=� � 8, D � 0:01). Right: Phase diagram for the
noise-induced phase transition as predicted by the mean-field
hypothesis (a=� � 8, b � 0:3, � � 20).

FIG. 4. Evolution of the spatially distributed system with
D � 0:05 for the process with linear decay (a � 0:1, b �
0:3, � � 0:0125, � � 20), starting from uniform initial con-
dition s0 � 0:55. Snapshots at times 30, 150, 500, 3000, using a
128� 128 grid with periodic boundary conditions.

P H Y S I C A L R E V I E W L E T T E R S week ending
19 MARCH 2004VOLUME 92, NUMBER 11
spatial correlations and assuming that E�y� � hsi (the
subscript r is omitted hereafter). For the system to be
self-consistent, hsi must be given by

hsi �
Z 1

0
sp�s�ds � f�hsi�; (11)

whose possible multiple solutions may be associated with
the breaking of ergodicity and the emergence of phase
transitions.

For the nonhomogeneous Takacs process, the solutions
of the self-consistency equation are shown in Fig. 2 along
with the corresponding long-term spatial pdf ’s. For low
values of D only one steady-state value of hsi exists (cases
I and II). As the diffusive coupling is increased under
constant noise intensity, the system behavior departs from
that of the uncoupled case, until a bifurcation (supposedly
an imperfect pitchfork one, e.g., [22]) takes place and
three solutions appear. The two extreme ones (e.g., cases
III and V) are actually observed during the numerical
simulations, while the intermediate one (case IV) is never
observed and thus presumably unstable. Conversely, if one
considers increasing noise intensities [e.g., 
�s�=�] for a
fixed diffusive coupling, the phase transition appears to
be reentrant (Fig. 3). As in [3], the ordered phase appears
for a window of intermediate noise intensities and is
destroyed at high noise levels.

A typical evolution is shown in Fig. 4 for uniform
initial conditions s0 � 0:55. Initially, the system is driven
towards a bimodal configuration in which high s values
110601-3
(light pixels) are prevalent while the spatial mean is
increasing; afterwards, the situation is inverted and the
low s values (dark sites) slowly take over (this corre-
sponds to case III of Fig. 2). For initial conditions greater
than 0.6, the final configuration is opposite (e.g., caseVof
Fig. 2). It remains to be clarified whether these final
configurations are effectively stable even to exceptional
events involving simultaneously the majority of the sites,
such as widespread occurrence of jumps or prolonged
absence thereof.

The results presented above are relevant for the prob-
lem of land-atmosphere interaction. Recent hydrologic
investigations have shown that rainfall representation as
a marked Poisson process provides a realistic description
of the precipitation component in the dynamics of the soil
water balance at the daily time scale [12,13,16]. Thus the
soil-moisture dynamics may be described by a stochastic
system of the type of Eq. (1) driven by homogeneous
Poisson noise and nonlinear ��s� accounting for evapo-
transpiration and deep infiltration. However, when the
110601-3
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water balance is analyzed at the continental scale, pos-
sible feedbacks (either due to local precipitation recycling
or to interactions in the soil-atmosphere energy balance)
may become important [7] and induce a soil-moisture
dependence of precipitation. To this regard, recent analy-
ses [23] of field data indicate an increase of the rain-
fall frequency at high soil-moisture levels. A simple
representation of this phenomenon would entail a state-
dependent rainfall frequency 
�s�, i.e., function of the
relative soil moisture, s. While a detailed theoretical
analysis and comparison with field data will be presented
elsewhere [23], a hydrologic interpretation of the pro-
cesses described before already suggests the possibility
of temporal persistence of dry and wet states in the
terrestrial water balance and the appearance of spatio-
temporal patterns in soil-moisture and precipitation dy-
namics at the continental scale.
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