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Analyzing diverse seismic catalogs, we have determined that the probability densities of the
earthquake recurrence times for different spatial areas and magnitude ranges can be described by a
unique universal distribution if the time is rescaled with the rate of seismic occurrence, which therefore
fully governs seismicity. The shape of the distribution shows the existence of clustering beyond the
duration of aftershock bursts, and scaling reveals the self-similarity of the clustering structure in the
space-time-magnitude domain. This holds from worldwide to local scales, for quite different tectonic
environments and for all the magnitude ranges considered.
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Although earthquakes are a phenomenon of great com-
plexity, certain simple general laws govern the statistics
of their occurrences [1-5]; however, for the time interval
between successive events a unified description has not
yet been established [6—9]. On the contrary, the rich
variability intrinsic to earthquakes has promoted that
all possibilities have been proposed for their temporal
properties, from totally random occurrence to the peri-
odic ticking of great quakes. The most extended view is
that of two separated processes, one for mainshocks,
which ought to follow a Poisson distribution [10] (or not
[6-9]), and one for an independent process to generate
aftershocks. Consequently, the ‘“‘standard practice” for
this approach consists first of delimiting the spatial area
to be studied, on the basis of its tectonic characteristics,
and then of carefully (not so standard) identifying after-
shocks, in order to separate them from the main sequence.

Here we take an alternative perspective, complemen-
tary to the previous reductionist view. We try to look at
the system as a whole, irrespective of tectonic features,
and place all the events on the same footing, whether
these would be classified as mainshocks or aftershocks
[11-13]. This follows one of the key guidelines of com-
plexity philosophy, which is to find descriptions on a
general level; the existence of general laws fulfilled by
all the earthquakes unveil a degree of unity in an ex-
tremely complex phenomenon [14].

We analyze a global catalog, the PDE from the NEIC
[15], as well as several local catalogs: that of the SCSN
(Southern California) [16], the JUNEC (Japan) [17], the
Bulletins of the IGN (the Iberian Peninsula and the North
of Africa) [18], and the BGS catalog (the British Islands
and the North Sea) [19]. Catalogs generally character-
ize each earthquake by three main quantities: time of oc-
currence, magnitude, and a vector of spatial coordinates
for the hypocenter; these are then the variables that we
focus on.

Without concerning ourselves with the tectonic proper-
ties, as Bak et al [11-13], we consider spatial areas
delimited by a window of L degrees in longitude and L
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degrees in latitude (this corresponds to a square region if
these angles are translated onto a rectangular coordinate
system [20]). For each one of these regions, only events
with magnitude M above a certain threshold M, are
considered (the threshold should be larger than the mini-
mum magnitude for which the catalog is considered
complete for the spatial and temporal windows consid-
ered). In this way, we transform a time process in four
dimensions (spatial coordinates and magnitude) into a
simple process on a line for which events occur at times
t;, with i =0,1,2,..., and therefore, the time between
successive events can be obtained as 7; =t; — t;_, | =
1,2,.... These are the recurrence times in a given L2
region for events above M., which can also be referred to
as interoccurrence or waiting times. Note that, with this
transformation, we have lost the structure in space and in
the magnitude scale; nonetheless, the change in the pro-
cess properties with the variation of L and M, will allow
us to recover some of this information.

Because of the multiple time scales involved (from
seconds or minutes to many years), the probability den-
sity of the recurrence time must be calculated with care.
We could work with the logarithm of 7, but an equiva-
lent and more direct possibility is to define the bins
over which the probability density is calculated exponen-
tially growing as ¢”, with ¢ > 1 and n labeling consecu-
tive bins. This ensures an appropriate bin size for each
time scale (we usually take ¢ = 2.5, although this par-
ticular value is totally irrelevant). We then count the
number of pairs of consecutive events separated by a
time whose value lies in a given bin and divide by the
total number of pairs of events (number of events minus
one) and by the size of the bin to attain the estimation of
the probability density D,,(7) over that bin, where xy
denotes the spatial coordinates of the region. (D, also
depends on L and M_, but for the sake of simplicity in the
notation, we obviate this dependence.) Moreover, because
of the incompleteness of the catalogs in the short-time
scale, we do not display in the plots recurrence times
smaller than 2 min.
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The entire Earth has been analyzed by this method.
Figure 1(a) shows the results for D,,(7) for worldwide
earthquakes in the NEIC-PDE catalog for the 1973-2002
period, using M, from 5 to 6.5 and L from 180° to 2.8°
(about 300 km), for many regions of different x, y co-
ordinates (see the figure’s caption). Note the variation of
the recurrence time across several orders of magnitude.
Figure 1(b) shows the rescaling of all the distributions
with the mean rate R in the region, defined as the total
number of events divided by the total time interval over
which these events span. The perfect data collapse implies
that we can write

ny(T) = nyf(ny’T),

where R,, stresses that the rate refers to the (x, y) region
(of size L? and with M = M_; also here we eliminate
these variables from the notation). The scaling function
f can be well fit by a generalized gamma distribution,

1(6) = C s exp(—67/B)

with parameters y = 0.67 = 0.05, 6 = 0.98 = 0.05, B =
1.58 £ 0.15, and C = 0.50 = 0.10, which yields a coeffi-
cient of variation CV = 1.2. In fact, the value of 6 can be
approximated to 1, which corresponds to the standard
gamma distribution; therefore, we have essentially a de-
creasing power law with exponent about 0.3, up to the
largest values of the argument, § = R,,7 about 1, where
the exponential factor comes into play.

The fit of the rescaled distributions by the gamma
scaling function is surprisingly good for intermediate
and large values of the recurrence time, about 7 > 0.01/
R, (this usually contains from 90% to 95% of probabil-
ity). The deviations are considerable for small values of 7.
Although the statistic is low in this case (few events in the
small bins being considered), for certain regions there is a
clear tendency for the distribution to exceed the value
given by the scaling function; that is, there is an excess of
very short recurrence times, in the form of another power
law but with the exponent much closer to (—)1. This
occurs when the rate in the region is not stationary, due
to the sudden increase and slow decay of the activity
provoked by aftershock sequences. Furthermore, these
increments become more apparent when the size of the
region decreases, in such a way that, for L = 22.5°, not
all the regions in the world verify the scaling law; this can
be solved in some cases by rescaling with the mean rate
in the region calculated, not over the whole time span of
the catalog, but only over the period for which the rate is
stationary (no activity peaks). Nevertheless, the after-
shocks can be so important for certain particular regions
that a stationary period may not exist; these cases are
then not included in Fig. 1, but are addressed below.

The same analysis is performed on local catalogs and
identical results hold, as Fig. 1(c) illustrates. For Southern
California for the 1984-2001 period, a number of small
regions with stationary activity are shown; for larger
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FIG. 1 (color online). Recurrence-time distributions without
and with rescaling. (a) Probability densities from the NEIC-
PDE worldwide catalog for several regions, L, and M. For L =
45°, all the regions with more than 500 events are shown,
whereas for L = 22.5°, only regions with moderate aftershock
activity are displayed (for these, the total number of events ver-
sus time shows a dominant linear behavior). The vector (k,, k,)
labels the different regions, for which the coordinates of the
center can be obtained as x=xy, + (k, +0.5)L, y=ynin+
(k, +0.5)L, with x;, = —180°, y: = —90°. (The 360° X 180°
region, which covers the whole planet, has been included for
completeness.) (b) Previous data, after rescaling, with a fit of
the scaling function f. (c) Rescaled distributions from local
catalogs. SC88, SC95, and SC84 refer to Southern California
for the years 1988—1991, 1995-1998, and 1984—-2001. To ob-
tain region coordinates, use the previous formula with
(Xmin> Ymin) = (—124°,29°), (=123°,30°), (125°,25°), (—20°,
30°), and (—10°,45°) for SC88-95, SC84, Japan, the Iberian
Peninsula, and the British Islands, respectively. The function
displayed is the fit obtained from the NEIC-PDE catalog.
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regions, the time window must be reduced to 1988-1991
or to 1995-1998, for instance, in order to find stationar-
ity. For Japan, we also analyze large regions for the 1995—
1998 period; for the Iberian Peninsula the period is
1993-1997, and for the British Islands, 1991-2001. The
magnitude thresholds range from 2 to 4, and L from 30°
to 0.16° (approximately 3300 to 17 km).

In all cases, the shape of the distribution D, (7) (clearly
different from an exponential), indicates that the memory
of the last earthquake is conserved up to the largest times,
with the probability of a subsequent event being maxi-
mum immediately after the last shock, and slowly de-
creasing with time. This constitutes a clustering effect
[21], in which earthquakes attract each other, and has as a
counterintuitive consequence the fact that the longer it
has been since the last earthquake, the longer the ex-
pected time will be till the next [6,22,23]. Since this
effect occurs beyond the duration of aftershock sequen-
ces, i.e., when the rate of seismic activity has returned to
its background value (for the region considered), and
extends for the largest times, it constitutes a long-term
clustering (in opposition to the short-term clustering of
aftershocks, the time scale being set by 1/R,,).

On the other hand, the scaling of D,,(7) under changes
in M., L, and region coordinates implies that the cluster-
ing structure is self-similar over different regions and
magnitude ranges. The robustness of the distribution
under such changes is therefore noteworthy. It is also
remarkable that if the region is kept fixed and only M,
varies, the scaling with the rate R,, can be substituted by
the factor 107°M¢, where b refers to the b value of the
frequency-magnitude relation [1,2] in that particular re-
gion [11,12]; despite the regional variability of b, the
universality of the scaling function f remains valid.

At the outset of this exposition, we suggested that our
results are valid for all events, including aftershocks;
however, aftershocks can break the scaling of the distri-
bution up to very large time values (in 1/R,, scale), as we
have also mentioned. One could then conclude that the
universal distribution does not describe the short-time
intervals over which aftershocks replicate; this may ap-
pear to be correct, but can turn out to be mistaken in the
following way: for aftershock sequences, the mean rate is
not stationary, but changes with time; therefore, we
should rescale the recurrence times using the “instanta-
neous” rate r,,(#). For many sequences, r,,(#) is found to
decay following the modified Omori law for long ¢,

A
rxy(t) = I_P’

where ¢ is the time elapsed since the mainshock (and
the parameters depend on x, y, L, and M_). Figure 2(a)
shows precisely this for several important earthquakes
in Southern California [16]. The data present clear
“holes” in the occurrence of small earthquakes (M < 3)
for about a couple of days after the main shock; however,
for the periods for which the power-law decay of the rate
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is fulfilled the catalog appears reasonably complete for
M =2, as the validity of the Gutenberg-Richter law
suggests (in fact, the deviations from the power law for
short times may be due to only the incompleteness of the
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FIG. 2 (color online). Analysis of aftershock sequences.
(a) Decay of the rate after a mainshock and illustration of
the Omori law for the following earthquakes in Southern
California: Chalfant Valley (July 21, 1986, M =5.9),
Landers (June 28, 1992, M = 7.3), Northridge (Jan. 17, 1994,
M = 6.7), and Hector Mine (Oct. 16, 1999, M = 7.1). Regions
of diverse size L are considered, all of these including the
mainshock. Some curves are shifted for the sake of clarity.
(b) Distributions of recurrence times for the previous sequen-
ces. (c) Distributions # of the dimensionless time r,,(¢)7, in
total agreement with the universal scaling function f derived
previously for the NEIC-PDE data.

108501-3



VOLUME 92, NUMBER 10

PHYSICAL REVIEW LETTERS

week ending
12 MARCH 2004

catalogs). The corresponding recurrence-time distribu-
tions (for the power-law-decay period) are displayed in
Fig. 2(b); the results after rescaling with r,, () appear in
Fig. 2(c), again in agreement with the universal distribu-
tion. The scaling is outstanding, taking into account that
the p values spread from 0.9 to 1.35. Note also that this
scaling implies the existence of a secondary clustering
inside the primary clustering of the aftershock sequence,
and therefore the process is not a nonhomogeneous
Poisson process [as the recurrence times are not governed
by an exponential distribution with decaying rate r,,(t)].
In summary, it is only the rate r,,(¢) [given by the Omori
law or being constant (R,, plus fluctuations) in the sta-
tionary case] that controls seismic occurrence.

The results we obtain are extremely robust against the
incompleteness of the catalogs in magnitude, space, and
time. The variation of the minimum magnitude M., re-
gion spatial coordinates, size of the region L, and tem-
poral window of observation (avoiding or explicitly
including the periods corresponding to important after-
shock sequences), spanning a very broad spectrum of
values, allows one to test the robustness of our conclu-
sions. This test is at the core of the procedure and makes it
clear the genuine physical origin of the universal scaling
law for earthquake recurrence times. We also note that
this law is obtained without any underlying model of
earthquake occurrence.

The differences between our approach and that of Bak
et al. [11,12] are worth mentioning. Instead of measuring
the recurrence-time distribution for a single L? region of
coordinates x, y, as we do, Bak et al perform a mixture of
all the recurrence times for all the regions; i.e., the values
of 7 coming from regions with different coordinates are
counted together in the same distribution. In some sense,
they are measuring the return times to different parts of a
large region (with heterogeneities also in time), whereas
we deal with plain recurrence-time distributions (in the
time-homogeneous case, or making the sequence station-
ary). Naturally, the results and the conclusions of both
approaches are also different. For an in-depth discussion
see Ref. [13].

The present characterization of the stochastic spatio-
temporal occurrence of earthquakes by means of a unique
law indicates the existence of universal mechanisms in
the earthquake-generation process, governed only by the
seismic rate [24]. The understanding of this, however, is
still far beyond us; nevertheless, the context of self-
organized critical phenomena [14] provides a coherent
framework at this stage. These findings can also be rele-
vant to continuous-time random-walk models of seismic-
ity [25,26], time-dependent hazard, and forecasting in
general [27-29].

This work would have been impossible without the
fundamental ideas of the late Per Bak. The author is
also grateful to M. Boguiia, K. Christensen, D. Pavon,
the Ramoén y Cajal program, and those institutions that
have made their catalogs available on the Internet.
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