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Networks of coupled periodic oscillators (similar to the Kuramoto model) have been proposed as
models of associative memory. However, error-free retrieval states of such oscillatory networks are
typically unstable, resulting in a near zero capacity. This puts the networks at disadvantage as compared
with the classical Hopfield network. Here we propose a simple remedy for this undesirable property and
show rigorously that the error-free capacity of our oscillatory, associative-memory networks can be
made as high as that of the Hopfield network. They can thus not only provide insights into the origin of
biological memory, but can also be potentially useful for applications in information science and
engineering.
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Cij sin��j��i� ij�; i� 1; . . . ;n; (1) coupling term Cij sin��j � �i �  ij� in the model (1)
replaced by
The celebrated Hopfield model of associative memory
[1] has provided fundamental insights into the origin of
neural computations and has since stimulated much in-
terest [2]. In this model, neurons in the network assume
discrete values (e.g., �1 and �1) and a set of patterns is
stored such that when a new pattern is presented, the
network responds by producing a stored pattern that
most closely resembles the new pattern. Of interest is
then the capacity, the maximum number of patterns per
neuron that the network can ‘‘memorize.’’ If a small
amount of error is allowed in the retrieval of patterns,
the capacity of the classical Hopfield network can be
shown to be 0.138 [2,3]. For error-free retrieval of pat-
terns, however, the capacity is generally reduced and is
proportional to 1= logn, where n is the number of neurons
in the network [1]. The physical significance of Hopfield’s
work lies in his proposal of the energy function and his
idea that memories are dynamically stable attractors,
naturally bringing concepts and tools from statistical
and nonlinear physics into neuro- and information sci-
ences as well as engineering.

Recent empirical findings in neuroscience [4,5] suggest
that synchronous firing of specific neurons is ubiquitous
in the brain. These have stimulated studies of models of
oscillatory associative memory based on temporal coding
of information [6–11]. Such models typically consist of
coupled periodic oscillators interacting with each other
according to a Hebbian rule, and the patterns are stored
as phase-locked oscillations. A paradigm for coupled
periodic oscillators is Kuramoto’s model [12], which is
relevant to many physical and biological phenomena [13].
The oscillatory models of associative memory can be
regarded as a generalization of Kuramoto’s model and
typically take the form

Xn
0031-9007=04=92(10)=108101(4)$22.50 
where each periodic oscillator is dynamically described
by a phase variable �i�t�, Cij is the coupling matrix, and
 ij is the synaptic phase delay. An advantage of this type
of model is that it can in principle be implemented using a
variety of physical devices including phase-locked loop
circuits [14], lasers [15], and MEMS resonators [16].

For pattern retrieval with small errors, a standard
mean-field treatment gives that the capacity of the
Kuramoto-type network described by (1) is about one-
third that of the Hopfield network [6–11]. Surprisingly,
error-free retrieval solutions appear to be typically un-
stable regardless of the network size, as long as the
number of memorized patterns exceeds two [8]. Thus
the error-free capacity of the network (1) is 2=n, which
is much smaller than that of the Hopfield network. This
implies that this type of network is not suitable for
applications that require error-free retrieval of stored
patterns. The aim of this Letter is to devise a scheme to
overcome this difficulty. In particular, we introduce a
second-order mode of strength " in the coupling function.
We then prove rigorously that the error-free capacity of
the improved network is at least 2"2= logn. Note that the
capacity scales with n in the same manner as in the
Hopfield network, but it can be enhanced by increasing
". Nonetheless, increasing " also tends to stabilize solu-
tions encoding patterns other than the stored (desirable)
ones, meaning that if " is too large, the solution for every
possible pattern can become stable, and the system cannot
distinguish the memory patterns from others. We are able
to argue, however, that the network can function as
effective associative memory for a finite range of ".
Thus, our modified oscillatory networks can be used as
error-free, associative-memory devices with similar ca-
pacity to that of the classical Hopfield network.

We consider a family of oscillator networks with the
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�ij��j � �i� � Cij sin��j � �i� �
"
n
sin2��j � �i�; (2)

where the new term "
n sin2��j � �i� corresponds to a

second-order Fourier mode and " is a parameter charac-
terizing the strength of this term. For this model to
describe an associative memory, the elements of the cou-
pling matrix are given by Hebb’s learning rule: Cij �
1
n

Pp

�1 �



i �



j , where �
 � ��
1 ; . . . ; �



n �T (�
i � �1,
 �

1; . . . ; p, i � 1; . . . ; n) denotes a set of p patterns to be
memorized. We write pn for the number of patterns to be
memorized in a network of size n. Patterns are chosen
randomly, so �
i are independent and identically distrib-
uted random variables with P��
i � 1� � P��
i � �1� �
1=2. We focus on the case for which the natural frequen-
cies of all oscillators are equal (say, !i � !). After the
change of variable �i ! �i �!t, the equations of motion
become

_��i �
Xn

j�1

Cij sin��j � �i� �
"
n

Xn

j�1

sin2��j � �i�; (3)

where i � 1; 2; . . . ; n. These equations are invariant under
translation by a constant, implying that there is at least
one direction in the phase space in which any solution is
neutrally stable. Equations (3) possess 2n fixed-point
solutions, corresponding to all possible binary patterns
of length n. Let � � ��1; . . . ; �n�T be an n-dimensional
vector of 1 ’s and �1’s representing one of those binary
patterns. There is a unique (up to constant translation)
fixed-point solution corresponding to the pattern �,
which is characterized by j�i � �jj � 0 if �i � �j and
j�i � �jj � � if �i � �j. We denote this solution by
����. In the original coordinates, they are phase-locked
oscillatory solutions, in which binary patterns are en-
coded in the locked phase deviations of the oscillators.
An example of such a solution is shown schematically
in Fig. 1.

The symmetry of the connection matrix C ensures that
(3) can be written as a gradient system with the Lyapunov
(energy) function

L��; "; C� � �
1

2

Xn

i;j�1

Cij cos��i � �j�

�
"
4n

Xn

i;j�1

cos2��i � �j�: (4)

Thus, any solution will eventually converge to a fix
point of the system located at a local minimum of
time 
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the energy function (4). Using Hebb’s learning rule for
C, the energy per oscillator can be expressed as
�LL��; ";�� 	 1

n L��; ";�� � � 1
2

Pp

�1m

2

 � "

4 q
2, where

� � ��1; . . . ; �p�, the order parameters m
 �

j 1n
P
n
j�1 �



j e

i�j j for 
 � 1; . . . ; p, and q � j 1n
P
n
j�1 e

2i�j j.
The parameter m
 is called the overlap and measures
the closeness of the solution to the memory pattern �
,
and q measures the closeness of the solution to its near-
est binary pattern. The second term in �LL��; ";�� is nec-
essary since a minimum of the first term is typically
located near but off the fixed point corresponding to
one of the patterns �
. The second term always has local
minima of the same depth at all fixed points representing
binary patterns, and thus, combined with the first term,
ensures that the energy minima are located precisely at
the memorized patterns. It is worth noting at this point
that the overlaps m
 for solutions ���� coincide with
those for the Hopfield model, i.e., m
 � j

P
j�


j �j=nj.

Moreover, since q � 0 for these solutions, the energy
levels �LL��;�� 	 L
����; ";��=n do not depend on "
and are identical to the energy per spin in the Hopfield
model.

We now give general stability results that hold for
any solution corresponding to a binary pattern, for a
finite n. The Jacobian matrix of Eq. (3) evaluated at � �
���� is �2"=n�E� 2"I � J, where E is the n� n matrix
of ones, I is the n� n identity matrix, and J is defined
componentwise by Jij � Cij�i�j � �ij

Pn
k�1 Cik�i�k �

1
n

Pp
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i �



j �i�j �

�ij
n

P
n
k�1

Pp

�1 �



i �



k �i�k. The sta-

bility of the solution ���� is determined by the eigen-
values of the Jacobian matrix. Since it is symmetric, all
eigenvalues are real. A solution is stable iff all eigen-
values are negative. Let �max�J� denote the maximum
eigenvalue of the matrix J. It can then be shown [17]
that the solution of (3) encoding the pattern � is a
symptotically stable if �max�J�< 2", and unstable if
�max�J� > 2". Figure 2 shows sample distributions (over
different choices of �
) of �max�J� for three types of �: a
memory pattern, a memory pattern with single-bit error,
and a random pattern. Notice that even for the memory
pattern it is always positive, indicating that the corre-
sponding solution is unstable for " � 0. In fact, our
numerics with various combinations of n and p sug-
gest that the same is true for any n and any p > 2 [18].
This is consistent with the observation in Ref. [8]. The
role of the second-order mode in the coupling function
that we have introduced can now be understood: It shifts
FIG. 1. A pattern encoded in the
phase deviation among the oscillators.
Each cell representing an oscillator is
painted in gray scale according to its
phase.
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FIG. 3. The final overlap after 1000 time units as a function
of the initial overlap for n � 1000, p � 40, and different values
of " ( � 0; 0:2; 0:4; 0:8). The final overlap is averaged over the
results from 10 random initial conditions with the same initial
overlap.
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FIG. 2. The distribution of the maximum eigenvalue �max�J�
for three types of solutions: a memory pattern, a memory
pattern with single-bit error, and a random pattern. We chose
each bit of each memory pattern to be �1 at random with equal
probabilities. The parameters of the system were n � 1000 and
p � 10. Note that �max�J� � 2" is the borderline of stability.
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the eigenvalues by 2" for each solution corresponding to
a pattern.

We next calculate the capacity for error-free retrieval
solutions: � � � ( � 1; . . . ; p). Letting � � � for a
fixed  in the expression for J above yields J � S�D�
f1� 
�p� 1�=n�gI, where Sij �

1
n

Pp
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i �
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�ij
n
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� 

P
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i �

 
i �



k �

 
k . The stabilities of

these solutions are then determined by �max�J�, whose
statistical behavior in the limit n! 1 depends on the rate
of growth of p � pn. We address the question of the
capacity in this limit by asking how large pn can be as
a function of n.

First consider the case " � 0. As we have mentioned,
the solutions corresponding to memory patterns appear
to be unstable for any combination of p > 2 and n. Here
we present an argument that supports this claim. The
condition for instability is �max�J� > 0 in this case. A
lower bound for �max�J� can be obtained by the varia-
tional principle: �max�J� � xTJx=xTx, 8x 2 Rn. By
choosing x to be the normalized eigenvector of S associ-
ated with the eigenvalue �max�S�, we obtain �max�J� �
�max�S� � �xTDx=xTx� � 1� 
�p� 1�=n�. Taking aver-
ages on both sides, we obtain h�max�J�i � h�max�S�i �

hxTDx=xTxi � 1� 
�p� 1�=n� � 2
���������
p=n

p
> 0. Here we

used the approximation, valid for 1 � p� n, that the
eigenvector x and the components of D are nearly inde-
pendent, which leads to hxTDx=xTxi � 0. We also used
h�max�S�i � 1� p

n � 2
���������
p=n

p
, which holds if n and p are

both large [19]. That the average value of �max�J� is
bounded away from zero indicates that the memory pat-
terns are unstable for " � 0.

Our main result for the general case with finite " can be
summarized in the following theorem [19].

Theorem: Let $ � limn
�pn logn�=n�, $ �
limn
�pn logn�=n�, and " > 0. If $< 2"2, then the
solution corresponding to � is asymptotically stable
with probability one in the limit n! 1. If $ >
�1� 2"�2=2, then it is unstable with probability tending
to one as n! 1.
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In other words, as n becomes large, the condition
pn=n < 2"2= logn guarantees stability, while the condi-
tion pn=n > �1� 2"�2=�2 logn� guarantees instability of
error-free retrieval solutions. In particular, if pn � cn for
some constant c, then $ � 1 and therefore the solution is
unstable no matter how large " is.

For random patterns for which each �i is chosen ran-
domly and independently to be �1with equal probability,
i.e., � is chosen in exactly the same fashion as �
, it is
straightforward to show that h�max�J�i � 1� 1=n.
Actually, we can show [19] that a stronger result holds:
If pn=n2 ! 0 as n! 1, then P
�max�J� � 1� �� ! 0 as
n! 1 for every � > 0, i.e., �max�J� * 1 for n� 1.
Hence, the network is capable of distinguishing the mem-
ory patterns from most of the other patterns, provided
that " < 1 [20].

Having established the local stability of a solution, we
address the issue of global stability. The existence of the
energy function L��; ";�� in (4) ensures that any solution
of the system converges to a phase-locked solution as
t! 1. On the other hand, the local stability of the
solutions representing the memory patterns means that
there is an open basin of attraction for each of these
solutions. How large are these basins? That is, how close
does the initial condition need to be to a memory pattern,
in order for the network to evolve into the phase-locked
state that encodes that pattern?

To quantify the size of these basins, we look at the
relationship between the overlaps for initial and final �.
Recall that overlap of one corresponds to zero distance,
while overlap of zero indicates that patterns are as far
apart as possible [21]. Figure 3 shows typical plots of
the (average) final overlap versus the initial overlap.
Each plot shares a general feature: As the initial overlap
decreases from one, the final overlap stays approximately
108101-3
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constant until the initial overlap reaches the critical
value, after which the final overlap decreases sharply.
The critical initial overlap appears to be around 0.4
for " � 0; 0:2; 0:4 and around 0.5 for " � 0:8. This cri-
tical value of initial overlap marks the boundary of
the basin of attraction of the memory pattern solution
in question, while the value of the final overlap for ini-
tial overlaps above the critical value represents the quality
of the retrieval process. Figure 3 illustrates two gen-
eral trends with respect to ", which are also observed
for other typical combinations of n and p: (i) As " in-
creases from zero, the retrieval error decreases (larger
final overlap) until it becomes zero (final overlap is one).
Zero error seems to be achieved at a critical value " � "1,
above which the stability condition for the averaged
�max�J� is satisfied. (ii) As " increases from zero, the
critical value of initial overlap (the size of basin) does
not change much until another critical value " � "2 above
which it increases (the basin shrinks). The transition at
" � "2 appears to correspond to the point at which the
first solution other than that of a memory pattern becomes
stable. Thus, in the range "1 < "< "2, the optimal per-
formance as associative memory is achieved: No error
occurs in the retrieval process and no solution other than
that of memory patterns is stable, leading to maximal
size of the basin of attraction for the memory pattern
solutions.

In summary, we have presented an analysis of the local
stability of the error-free memory pattern solutions for a
new type of oscillatory model of associative memory. Our
model includes an extra, second-order Fourier mode in
the coupling function, which enables us to control the
stability of the solutions for all patterns and to distinguish
the memory pattern from others by their stabilities. The
model is also closely related to the cumulative distribu-
tion function of spikes in neural networks [22]. The
capacity of our model turns out to follow the same scaling
with the number of neurons as in the case of the classical
Hopfield model, but with a prefactor that depends on the
relative strength of the second-order mode. Our conclu-
sion is that, with a simple modification, oscillatory net-
works of associative memory based on phase locking with
a Hebbian connection scheme are capable of performing
almost as well as the Hopfield network.

Our model can be modified to allow storage of pat-
terns with ns > 2 symbols. Similar stability results
should follow in a straightforward manner simply by
replacing the second term of the coupling function with
�"=n� sin
ns��j � �i��. We also note that the inclusion of
the second term in the coupling function does not change
the locality of the interactions between neurons [23]. Our
coupling function can in principle be implemented using
a known electronic circuitry, and thus it would be feasible
to implement the entire network as a network of phase-
locked loops.
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