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Multipartite Bound Information Exists and Can Be Activated
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We prove the conjectured existence of bound information, a classical analog of bound entanglement,
in the multipartite scenario. We give examples of tripartite probability distributions from which it is
impossible to extract any kind of secret key, even in the asymptotic regime, although they cannot be
created by local operations and public communication. Moreover, we show that bound information can
be activated: three honest parties can distill a common secret key from different distributions having
bound information. Our results demonstrate that quantum information theory can provide useful insight
for solving open problems in classical information theory.
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In 1993, Maurer introduced the following scenario for
information-theoretically secure secret-key agreement
[1]: several parties, including a possible adversary, share
partially correlated (classical) information. The honest
parties aim to establish a secret key, processing this
information with local operations and public com-
munication (LOPC). The secret key has to be completely
uncorrelated to the adversary’s information. Because
information-theoretically secure secret bits cannot be
created by LOPC, all the secrecy has to come from the
correlations that they initially have. Maurer’s formulation
shares many similarities with the standard scenario of
entanglement manipulations in quantum information
theory. There, several separated parties share many copies
of a multipartite quantum state, which specifies the kind
of quantum correlations existing among them and the
environment. Their goal is to obtain pure-state entangle-
ment applying only local operations and classical com-
munication (LOCC). A pure state is uncorrelated to the
environment. Then, the environment plays the same role
as the adversary in cryptography. The analogy between
both scenarios was first explored in Ref. [2] and later
developed in Refs. [3,4].

Given a state p in a composite system of several parties,
two fundamental questions in quantum information
theory follow: (i) Can it be prepared by LOCC? (ii) Can
pure-state entanglement be extracted from many copies of
p by LOCC? These questions, which still remain un-
solved, define the separability and distillability problems
(see, for instance, [5]). Despite the natural expectation
that all entangled states were distillable, in 1998 the
Horodecki family showed the existence of the so-called
bound entangled states [6]. These are states from which it
is impossible to extract pure-state entanglement although
they cannot be created by LOCC. Following the analogy
between the entanglement and key-agreement scenarios,
Gisin and Wolf conjectured and gave evidence for the
existence of a classical analog of bound entanglement, the
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so-called bound information [2]. This consists of infor-
mation shared among several honest parties and an eaves-
dropper such that (i) it is impossible for the honest parties
to extract a secret key and (ii) this information cannot be
distributed by LOPC.

In this work we present the first provable examples of
multipartite bound information. Remarkably, our ex-
amples can be activated in the same sense as in the
quantum case. That is, after LOPC processing different
kinds of bound information, a secret key can be obtained.
The intuition used to get these results entirely comes from
already known examples of bound entangled states in
three-qubit systems. Our work then constitutes one of
the first situations where the quantum information insight
gives the answer to an open problem in classical infor-
mation theory [7]. Indeed, up to now the flow of results
has mainly been in the opposite direction; e.g., the quan-
tum protocols for entanglement distillation of Ref. [8]
were derived from existing classical protocols for key
distillation. But before proving our results, let us review
some known facts about secret-key distillation.

In his original formulation of the key-agreement prob-
lem, Maurer considered just the bipartite scenario: two
honest parties (Alice and Bob) connected by an authentic
but otherwise insecure classical communication channel,
such that, a possible eavesdropper (Eve) learns the
whole communication between them. Additionally, each
party—including Eve—has access to correlated infor-
mation given by repeated realizations of the random
variables A, B, and E (possessed by Alice, Bob, and
Eve, respectively), jointly distributed according to
P(A, B, E). The goal for Alice and Bob is to obtain a
common string of random bits for which Eve has virtu-
ally no information, i.e., a secret key. The maximal
amount of secret-key bits that can be asymptotically
extracted per realization of (A, B) used is called the
secret-key rate, denoted by S(A : B || E). This quantity
can be seen as the analog of the distillable entanglement,
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E,; [9]. More recently, the so-called information of for-
mation I, (A; B|[E) has been introduced in [10] as the
analog of the entanglement cost, E, [9]. Given P(A, B, E),
it can be understood as the minimal number of secret-key
bits asymptotically needed to generate each independent
realization of (A, B)—distributed according to P(A, B) —
such that the information about (A, B) contained in the
messages exchanged through the public channel is at most
equal to the information in E [11]. A probability distri-
bution can be established by LOPC if and only if
Itorm = 0. Using these quantities, we can now define
bound information. A probability distribution P(A, B, E)
contains bound information when the following two con-
ditions hold [12]:

SA:BIE)=0;  Iyn(A:BIE)>0. (1)

A useful upper bound for S(A : B || E) is given by the
so-called intrinsic information, introduced in [13]. This
quantity, denoted by I(A : B | E), will play a significant
role in the proof of our results. The intrinsic information
between A and B given E is defined as

I(A:B|E)=minl(A : B|E), ()
E—E
where the minimization runs over all possible stochastic
maps P(E|E) defining a new aleatory variable E. The
quantity I(A : B|E) is the mutual information between A
and B conditioned on E. It can be written as

I(A: B|IE) = H(A, E) + H(B,E) — H(A, B, E) — H(E),
€))

where H(X) is the Shannon entropy of the aleatory vari-
able X. The intrinsic information also gives a lower bound
for the information of formation [10]; thus

SA:BIE)<I(A:BlE) = Lym(A: BIE). (4

The generalization of Maurer’s formulation to the mul-
tipartite scenario is straightforward. In our case, three
honest parties—Alice, Bob, and Clare—are connected
by a broadcast public communication channel which is
totally accessible to the eavesdropper—Eve—but that
she cannot tamper. As it happens in entanglement theory,
the generalization of the secret-key rate (E;) and the
information of formation (E,) to the multipartite case
may not be univocal [4]. Anyhow, the idea of multipartite
bound information is unambiguous: a probability distri-
bution P(A, B, C, E) contains bound information if (i) no
pair of honest parties—even with the help of the third
one—can generate a secret key from many copies of
P(A, B, C, E). This also prevents the possibility of distill-
ing a tripartite secret key [14], because from it, a bipartite
key between any pair of parties could be generated, giv-
ing a contradiction (see [15]). (ii) Its distribution by LOPC
is not possible. More precisely, a large number of realiza-
tions of the aleatory variables A, B, and C following the
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reduced probability distribution P(A, B, C) cannot be dis-
tributed among Alice, Bob, and Clare if the broadcasted
messages are constrained to contain at most the informa-
tion of the variable E [11]. Having collected all these
facts, let us prove the main result of this work, namely,
the existence of bound information.

Our example of bound information is given by the
following probability distribution, denoted by P;:

A B C E P,(A B, C E)
0 0 0 0 1/6
0 0 1 1 1/6
0 1 0 2 1/6
1 0 1 3 1/6
1 1 0 4 1/6
1 1 1 0 1/6

This is the probability distribution that one obtains after
measuring the three-qubit bound entangled state p;, given
in Eq. (17) of Ref. [16], in the computational basis. Note that
P,(0,1,1) = P(1,0,0) = 0 and this distribution is invariant,
up to a relabeling of E, under interchange of B and C. In
what follows, it is seen that from these correlations, it is
impossible to extract a secret key between any pair of
parties, even with the help of the third one.

First, consider the bipartite splitting AB — C, where
Alice and Bob are allowed to perform joint (secret)
operations; i.e., they are connected by a private channel. It
is easy to see that I(AB : C|E) = p (E = 0)I(AB : C|E =
0) = 1/3. Now, applying the stochastic map E — E cor-
responding to 1 — 0,4 — 0 and identity for the rest of the
values, we obtain I(AB : C|E) = 0. That is, the intrinsic
information (2) vanishes, and because of (4) we have that

S(AB:CI|lE)=0. (5)

This implies that Clare cannot establish a secret key with
Alice nor with Bob (even in the favorable situation where
Alice and Bob are together). Because P; is symmetric
with respect to B and C, we also have that Bob cannot
extract a key with Alice nor with Clare. Therefore, no
secret key between any pair of parties can be generated
from many copies of P; by LOPC.

Notice that P; contains some kind of secret correla-
tions, although they are not distillable in the previous
scenarios. This fact becomes manifest when we allow
Bob and Clare to perform joint operations. In this case,
we have again that I(BC : A|E) = 1/3. But now, it is
possible to construct a key distillation protocol achieving
this rate: Bob and Clare announce publicly the cases
where they have B = C, without saying the specific value.
Each of these filtered realizations of P;, which happen
with probability 1/3, contains one secret bit shared be-
tween A and BC. Therefore,

S(A:BC||E)=1(A:BC|lE) =1 (6)

This condition cannot be satisfied by those probability
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distributions created by LOPC, since in this case S =0
for all the bipartite splitting of the honest parties. Hence,
by definition, P; is an example of bound information,
since it contains nondistillable secret correlations.

As we have seen, the secret correlations present in P,
can be activated when a private channel is established
between Bob and Clare. Indeed, the secret key given to
these two parties allows one to activate the already exist-
ing secret correlations with Alice. A similar phenomenon
also happens in the quantum case, e.g., for the state p;
that inspired the construction of P;. An even more in-
triguing example of activation of bound entanglement
consists of the fact that the tensor product, and even the
mixture of bound entangled states, can contain distillable
entanglement [16,17]. This process is sometimes called
superactivation of bound entanglement. In the next lines,
we show the analog of superactivation for secret correla-
tions. Again, our example is inspired by the results of
Ref. [16].

Consider the case in which the honest parties have
access to a source of correlated information that supplies
them with three probability distributions P, P,, and Pj,
where P, and P; are a cyclic permutation of P,

P5(A,B,C,E) = P,(B,C, A E);

7
Py(A, B, C,E) = P,(C, A B, E) @

Of course, all these distributions contain bound informa-
tion. Using only LOPC, Alice, Bob, and Clare can con-
struct an equally weighted mixture of P, P,, and Pj:

Py = 3(Py + Py + P3). (8)

An equivalent scenario would consist of a source prepar-
ing randomly the three distributions, in such a way that
the knowledge about the actual distribution is accessible
only to Eve. The resulting distribution, P, is detailed in
the following table:

ool

Poix(A, B, C, E)

1/6
1/9
1/9
1/9
1/9
1/9
1/9
1/6

—_—— == O O OO
—_—_ 0 O = =00

— o —m, O, O ~2O|N
SN bk WD~ O |

Actually, if one takes into account the total information
accessible to the parties, Eve’s symbol should be equal to
(E, i), where i = {1, 2, 3} specifies the distribution P; and E
is associated to the triple of random variables (4, B, C).
However, it is easy to see that this distribution is equivalent
to P, from the point of view of Eve’s information on
Alice, Bob, and Clare’s symbols.

Interestingly, P, can be distilled into a tripartite key.
To achieve this goal, the honest parties can use the re-
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peated code protocol of Ref. [1], generalized to the multi-
partite scenario. It consists of the following steps:

(i) Each party takes N realizations of its own random
variable:

AI!AZJ""AN; BI’BZ""’BN; CI’CZ""’CN’
©))
where A, B;,C; are correlated according to

PLix(A;, B;, C;, E;), for every value of i.

(i1) Alice—or any of the honest parties—generates
locally a random bit s,, computes the numbers X; :=
A; + s4, where the sum is modulo 2, for each value of i,
and broadcasts through the public channel the N-bit
string:

X, Xp .o, Xy (10)

(iii) Bob adds bitwise this string to his symbols
Bi, B, ..., By. If he obtains the same value for all of
them, B; + X; = s, Vi, he accepts sz and communicates
the acceptance to the other parties. If not, the N realiza-
tions of P, are rejected. Clare does the same, accepting
sc only when C; + X; = s¢, Vi.

For any accepted N-bit string only four cases are pos-
sible: A;, =B; =C; Vi,A; =B; # C; Vi, B; = C; # A;
Vi, or C; = A; # B; Vi. The probability of being in the
first case, once the string has been accepted by Bob and
Clare, reads

@

P(SA =S — Sclaccepted) = m,

an

which tends to one for large N. Thus, this protocol allows
the honest parties to correct all their errors since it selects
only the 000 and 111 events. Note that for these filtered
events, Eve has E = 0 whatever the value of (4, B, C) is.
Therefore, she has no information about sy, so the parties
end sharing a perfect secret bit [18]. This proves that P,
is distillable, although it has been generated by LOPC
from three probability distributions that are nondistil-
lable. We have then that bound information can be acti-
vated with bound information. Let us also mention that
this activation provides per se an alternative proof of the
fact that the initial probability distribution, P, contains
secret correlations.

To summarize, in this work we have proven the exis-
tence of bound information, a classical analog of bound
entanglement conjectured in [2], in the tripartite sce-
nario. The intuition for our proof comes from known
examples of bound entangled states in three-qubit sys-
tems. We have also shown that bound information, like
bound entanglement, can be activated: the probabilistic
mixture of three distributions having bound information
gives a distillable distribution. These results are straight-
forward generalizable to an arbitrary number of parties.
Indeed, we have found several examples of probability
distributions having bound secret correlations, which
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exhibit a wide variety of activation properties. These
results will be given elsewhere.

Of course, it still remains as an open question whether
bound information exists in the bipartite scenario, i.e., to
find probability distributions P(A, B, E) such that 0 = § <
Itorm- The previous evidence given in Ref. [2] is now
significantly strengthened by our results. And if it exists,
the next open problem would be to see whether bound
information can be activated, as it seems to happen for
bound entanglement in the bipartite scenario [19].

We conclude by mentioning the intriguing analogies
that exist between privacy and entanglement. Very re-
cently, it has been shown that any entangling channel
can be seen as a source of privacy [20] and that a secret
key can be extracted even from some nondistillable quan-
tum states [21]. Our results indeed exploit this connection
and constitute one example of an almost unexplored
application of quantum information theory: the use of
its formalism to solve open problems in classical infor-
mation theory.
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