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We present a generalization of entanglement based on the idea that entanglement is relative to a
distinguished subspace of observables rather than a distinguished subsystem decomposition. A pure
quantum state is entangled relative to such a subspace if its expectations are a proper mixture of those of
other states. Many information-theoretic aspects of entanglement can be extended to this observable-
based setting, suggesting new ways of measuring and classifying multipartite entanglement. By going
beyond the distinguishable-subsystem framework, generalized entanglement also provides novel tools
for probing quantum correlations in interacting many-body systems.
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braic language used to analyze the system [4], may
further complicate the choice of preferred subsystems.

physics and information-physics perspective, by focusing
on the case where the observable subspace is a Lie algebra.
Entanglement is a uniquely quantum phenomenon
whereby a pure state of a composite quantum system
may cease to be determined by the states of its constituent
subsystems [1]. Entangled pure states are those that have
mixed subsystem states. To determine an entangled state
requires knowledge of the correlations between the sub-
systems. As no pure state of a classical system can be cor-
related, such correlations are intrinsically nonclassical,
as strikingly manifested by the violation of local realism
and Bell’s inequalities [2]. In the science of quantum
information processing (QIP), entanglement is regarded
as the defining resource for quantum communication and
an essential feature needed for unlocking the power of
quantum computation. However, in spite of intensive in-
vestigation, a complete understanding of entanglement is
far from being reached.

To unambiguously define entanglement requires a pre-
ferred partition of the overall system into subsystems. In
conventional QIP scenarios, subsystems are associated
with spatially separated ‘‘local’’ parties, which legiti-
mates the distinguishability assumption implicit in stan-
dard entanglement theory. However, because quantum
correlations are at the heart of many physical phenomena,
it would be desirable for a notion of entanglement to be
useful in contexts other than QIP. Strongly interacting
quantum systems offer compelling examples of situations
where the usual subsystem-based view is inadequate.
Whenever indistinguishable particles are sufficiently
close to each other, quantum statistics forces the acces-
sible state space to be a proper subspace of the full ten-
sor product space, and exchange correlations arise that
are not a usable resource in the usual QIP sense. Thus, the
natural identification of particles with preferred subsys-
tems becomes problematic. Even if a distinguishable-
subsystem structure may be associated with degrees of
freedom different from the original particles (such as a
set of modes [3]), inequivalent factorizations may occur
on the same footing. Finally, the introduction of quasi-
particles, or the purposeful transformation of the alge-
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While efforts are under way to obtain entanglement-
like notions for bosons and fermions [3,5] and to study
entanglement in quantum critical phenomena [6–8],
formulating a theory of entanglement applicable to the
full variety of physical settings remains an important
challenge.

In this Letter, we present a notion of generalized en-
tanglement (GE), which incorporates the entanglement
settings introduced to date in a unifying framework. This
is achieved by realizing that entanglement is an observer-
dependent concept, whose properties are determined by
the expectations of a distinguished subspace of observ-
ables of the system of interest, without reference to a
preferred subsystem decomposition. Distinguished ob-
servables may represent a limited means of manipulating
and measuring the system. Standard entanglement is
recovered when these means are limited to local observ-
ables acting on subsystems. The central idea is to general-
ize the observation that standard entangled pure states are
those that look mixed to local observers. Each pure
quantum state gives rise to a reduced state that provides
only the expectations of the distinguished observables.
The set of reduced states is convex and, similar to an
ordinary quantum state space, it includes pure states (the
extremal ones). We say that a pure state is generalized
unentangled relative to the distinguished observables, if
its reduced state is pure, and generalized entangled other-
wise. The definition extends to mixed states in a standard
way: A mixed state is unentangled if it can be written as a
mixture (or convex combination) of unentangled pure
states. Because our definition depends only on convex
properties of the distinguished spaces of observables
and states we consider, it provides a notion of entangle-
ment within a general convex framework suitable for
investigating the foundations of quantum mechanics
and related physical theories (cf. [9] and references
therein).

The mathematical foundation of GE is established in
[10]. Here we highlight the significance of GE from a
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A key result identifies pure generalized unentangled
states with generalized coherent states (GCSs, a connec-
tion independently noted by Klyachko [11]), which are
well known for their applications in physics [12].We show
how many information-theoretic notions previously
thought to be specific to partitioning into subsystems
extend to coherent state theory and beyond, define new
measures of entanglement based on the general theory,
and apply quantum information to condensed-matter
problems. In particular, we discuss notions of generalized
local operations assisted by classical communication
(GLOCC) under which the ordinary measures of standard
entanglement do not increase, as well as GE measures
with the desired behavior under classes of GLOCC maps.
New measures of standard entanglement can be con-
structed for the multipartite case. A simple GE measure
obtained from the purity relative to a Lie algebra is a
useful diagnostic tool for quantum many-body systems,
playing the role of an order or disorder parameter for
broken-symmetry quantum phase transitions.

Generalized entanglement.—We first revisit the stan-
dard setting for entanglement where we have two dis-
tinguishable subsystems forming a bipartite system. Let
the mn-dimensional joint state space H factorize as
H � H a �H b, with H a, H b m-, n-dimensional, re-
spectively. In this setting, physical considerations distin-
guish a preferred set of observables, spanned by traceless
Hermitian operators of the form A � 1 and 1 � B, which
are the local observables acting on system a or b alone.
For each pure state j i 2 H a �H b, one may con-
sider the reduced state describing the expectations of
measurements of local observables. The reduced state is
determined by the pair of reduced density operators,
	a :� trbj ih j and 	b :� traj ih j. Because pure prod-
uct states are exactly those for which subsystem states
are pure, our definition of GE relative to the local observ-
able subspace coincides with the standard definition of
entanglement.

The extent to which our viewpoint extends the
subsystem-based definition may be appreciated in situ-
ations where no physically natural subsystem partition
exists and conventional entanglement is not directly
applicable. Consider a single spin-1 system, whose
three-dimensional state space H carries an irreducible
representation of su�2�, with generators Jx; Jy; Jz satisfy-
ing 	J�; J�
 � i"���J� ("��� being the totally antisym-
metric tensor). Suppose that operational access to the
system is restricted to observables in the given represen-
tation of su�2�. The reduced states can be identified with
vectors of expectation values of these three observables:
They form a unit ball in R3, and the extremal points are
those on the surface, having maximal spin component 1
for some linear combination of Jx; Jy; Jz. These are the
‘‘spin coherent states,’’ or GCSs for SU(2) [12]. For any
choice of spin direction, H is spanned by the j1i; j0i;
j�1i eigenstates of that spin component; the first and last
are GCSs, but j0i is not, characterizing j0i as a general-
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ized entangled state relative to su�2�. All pure states
appear unentangled if access to the full algebra g �
su�3� is available [that is, su�3� is distinguished].

This example illustrates that, when the distinguished
subspace forms an irreducibly represented Lie algebra,
the set of unentangled states is the set of GCSs. Another,
more physically motivated characterization is as the set
of states that are unique ground states of a distinguished
observable. To formally relate these characterizations
of unentangled states, we review the needed Lie repre-
sentation theory [13]. A Cartan subalgebra (CSA) c of a
semisimple Lie algebra h is a maximal commutative
subalgebra. A vector space carrying a representation of
h decomposes into orthogonal joint eigenspaces V� of
the operators in c. That is, each V� consists of the set
of states j i such that for x 2 c, xj i � ��x�j i. The label
� is therefore a linear functional on c, called the weight
of V�. In the above example, any spin component J� spans
a (one-dimensional) CSA c�. There are three weight
spaces labeled by the angular momentum along �, and
spanned by the states j1i; j0i; j � 1i of the previous para-
graph. The subspace of operators in h orthogonal in the
trace inner product to c can be organized into orthogo-
nal ‘‘raising and lowering’’ operators, which connect
different weight spaces. In the example, choosing Jz as
the basis of our CSA, these are J� :� �Jx� iJy�=

���
2

p
. For a

fixed CSA and irreducible representation, the weights
generate a convex polytope; a lowest (or highest) weight
is an extremal point of such a polytope, and the one-
dimensional weight spaces having those weights are
known as lowest-weight states. The set of lowest-weight
states for all CSAs is the orbit of any one such state under
the Lie group generated by h. These are the group-
theoretic GCSs [12]. Notably, the GCSs attain minimum
invariant uncertainty [14].

A natural way to relate a state j i 2 H to a Lie
algebra h (or, more generally, any set) of operators acting
on H is to project j ih j onto h. This projection deter-
mines the expectations of operators in h for j i. The
generalized unentangled states are the ones for which
such a projection is extremal. This motivates the follow-
ing definition. Let fxig be a Hermitian (xi � xyi ) orthogo-
nal (tr xixj / �ij) basis for h [15]. The purity of j i
relative to h (or h purity) is Ph�j i� :�

P
ijh jxij ij

2,
where the xi have a common, rescaled norm chosen to
ensure that the maximal value is 1. Ph�j i� is the square
distance from 0 of the projection of j ih j. For pure
bipartite states, the su�m� � su�n� purity is (up to a
constant) the conventional purity given by the trace of
the square of either subsystem’s reduced density operator.

Thus far, h has been assumed to be a real Lie algebra of
Hermitian operators. These may be thought of as a pre-
ferred family of Hamiltonians, which generate (via h �
eih) a Lie group of unitary operators. More generally, we
want Lie algebraically distinguished completely positive
(CP) maps, 	 �

P
iAi	A

y
i . A natural class is obtained by

restricting the ‘‘Hellwig-Kraus’’ (HK) operators Ai to lie
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in the topological closure ehc�1 of the Lie group generated
by the complex Lie algebra hc � 1 [16]. Having HK op-
erators in a group ensures closure under composition.
Using hc � 1 allows nonunitary HK operators. Topologi-
cal closure introduces singular operators such as projec-
tors. The following characterizations of unentangled
states (proven in [10]) demonstrate the power of the Lie
algebraic setting.

Theorem.—The following are equivalent for an irre-
ducible representation of h on H : (i) 	 is generalized
unentangled relative to h. (ii) 	 � j ih j with j i the
unique ground state of some H in h. (iii) 	 � j ih j with
j i a lowest-weight vector of h. (iv) 	 has maximum h
purity. (v) 	 is a one-dimensional projector in ehc�1.

Generalized LOCC.—The semigroup of LOCC maps
[17] and the preordering it induces on states are at the core
of entanglement theory. Given an HK representation fAig
of a CP map M, we can view each Ai as being associated
with measurement outcome i, obtained with probability
trAy

i Ai	, and leading to the state Ai	A
y
i . The set fAig and

a list of maps Mi, with HK operators fBijg, specify a new
map with representation fBijAig. This map can be imple-
mented by first applying M and then, given measurement
outcome i, applying Mi. We call this conditional compo-
sition of maps. Closing the set of one-party maps (for all
parties) under conditional composition gives the LOCC
maps. When the distinguished observables form a semi-
simple Lie algebra h, a natural multipartite structure can
be exploited to generalize LOCC. h can be uniquely ex-
pressed as a direct sum of simple Lie algebras, h � �ihi.
A Hilbert space irreducibly representing h factorizes as
H � �iH i, with hi acting nontrivially on H i only.
This resembles ordinary entanglement, except that the
local systems H i may not be physically local, and actions
on them are restricted to involve operators in the topo-
logical closure of a local Lie group representation which
need not be GL� dim�H i�� as in standard entanglement.
For each simple algebra hi, a natural restriction is to CP
maps with HK operators in e�hi�c�1. GLOCC, generalized
LOCC, is the closure under conditional composition of
the set of operations each of which is representable with
HK operators in the topological closure of e�hi�c�1 for
some i.

Measures of generalized entanglement.—Because GE
relative to h reflects incoherence relative to h, which
amounts to mixing from the point of view of h, a natural
Lie algebraic GE measure is the convex roof extension of
the pure-state measure 1� Ph�	�. This extension is de-
fined as in standard entanglement theory: Given a pure-
state measure �, ��	� is the minimum, over pure-state
ensembles for 	, of the ensemble average of ��	�; explic-
itly, ��	� � min�i;pi�0;

P
i
pi�1;

P
i
pi�i�	

P
i pi���i�. (This

enforces the natural requirement of convexity.)
Another approach to pure-state GE measures is sug-

gested by the convex structure of reduced states and uses
natural mixedness measures � on finite probability dis-
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tributions p � �p1; . . . ; pk�. Such measures are concave
and permutation invariant. Examples are entropy,
�ln�p� :� �

P
ipi lnpi, and Renyi entropy, �1�p� :� 1�P

ip
2
i . For a reduced state ", define ��"� by minimizing

��p� over ways of writing " �
P
ipi"i with pi proba-

bilities and "i pure reduced states. For an (unreduced)
pure state 	 with reduction #, define ��	� :� ��#�.
Besides being convex, it is also desirable that measures
be nonincreasing under GLOCC. We established in [10]
that the convex roof extensions of these measures are
nonincreasing under those GLOCC operations imple-
mentable via conditional composition of operations with
unitary HK operators in the Lie group. As with standard
entanglement, no single measure can capture the com-
plexity of GE.

Generalized multipartite entanglement.—GE contrib-
utes to the study of conventional entanglement in multi-
partite systems. For N qubits, the relevant algebra for
conventional entanglement is h � �Ni�1su�2�i, generated
by the Pauli matrices for each qubit; then Ph�j i� �
�2=N�

P
itr	

2
i � 1, where 	i is qubit i’s reduced density

matrix. The pure product states have maximal purity
Ph � 1 (unentangled), whereas the Greenberger-Horne-
Zeilinger states jGHZNi :� 2�1=2	j"" � � � "i � j## � � � #i

(as well as products of N=2 Einstein-Podolsky-Rosen
states jEPRi�N=2, for even N) have minimal purity
0 (are maximally entangled by this measure). States
of the form jWNi :� N�1=2 PN

i�1 j"" � � � "#i" � � � "i have
an intermediate purity �N�2

N �2. In the N ! 1 limit,
Ph�jWNi� ! 1, whereas jGHZNi remains maximally en-
tangled. Interestingly, for this special choice of h, we
have proved that 1� Ph coincides with the global entan-
glement measure introduced in [18]. Different observable
algebras, or hierarchies of subalgebras, further character-
ize multipartite quantum correlations. Other measures
such as ��	� give additional insight. Either approach
can distinguish jGHZNi from jEPRi�N=2.

Another example consists of two spin-1 particles in the
total spin representation of su�2�. Suppose that the two
spins can be accessed only collectively, e.g., using a global
external field. Then the distinguished observable subspace
is spanned by operators J� :�J�1�� �1�1�J�2�� , J�1�� ; J

�2�
�

being spin-1 generators for each su�2�. The (unentangled)
GCSs here are states of maximal total spin projection in
some direction � (states of the form j1�ij1�i), whereas
product states, such as j0�ij0�i with zero spin projection,
are generalized entangled, with minimal purity relative
to this algebra. This reflects the fact that no SU(2) spin
rotation can connect j0�ij0�i to the unentangled state
j1�ij1�i.

Entanglement in condensed matter.—GE can be ap-
plied to the study of interacting quantum systems,
where the characterization of quantum correlations is
essential to a complete understanding of quantum phase
transitions (QPTs). Consider the case of an anisotropic
one-dimensional spin-1=2 XY model in a transverse
107902-3
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FIG. 1 (color online). Analytic behavior of the (shifted) pu-
rity, limN!1P

0
u�N�, for the BCS state as a function of g. It scales

with an exponent # � 1 near gc [20]. Thus, the correlation
length diverges as �gc � g��# (Ising universality class).
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field, described by the Hamiltonian acting on the N-spin
space:

H��g
XN

i�1

	�1�(�JixJ
i�1
x ��1�(�JiyJ

i�1
y 
�

XN

i�1

Jiz; (1)

where ( 2 	0; 1
 is the anisotropy, g 2 	0;1� is a tunable
parameter, and JN�1

� � J1�. H can be diagonalized by
performing a Jordan-Wigner mapping to spinless fermi-
ons. The resulting ground state is BCS-like. A transition
between a paramagnetic state (disorder) and a ferro-
magnetic state (order) occurs for all ( > 0 at the critical
value gc�1, in the thermodynamic limit N!1. Rele-
vant algebras, generated by bilinear products of spinless-
fermion operators [12], include u�N� � fcyi ci �

1
2 ;

�cyi cj � cyj ci�=
���
2

p
; �cyi cj � cyj ci�=�i

���
2

p
�g, and so�2N� �

u�N� � f�cyi c
y
j � cjci�=

���
2

p
; �cyi c

y
j � cjci�=�i

���
2

p
�g, 1� i <

j� N. These are orthogonal, commonly normalized
bases, facilitating the computation of purity. A BCS state
is a GCS of so�2N�; thus it is generalized unentangled
relative to so�2N�, capturing the fact that quasiparticles
are noninteracting in this description. However, GE may
be present relative to the smaller algebra u�N� [19]. The
thermodynamic limit of the purity relative to u�N� as a
function of g plays the role of a disorder parameter
(Fig. 1), sharply detecting the QPTand characterizing its
universality class. This appears to be a generic feature of
broken-symmetry (here Z2) phase transitions. The purity,
a sum of squared expectations of observables, is a global
measure of fluctuations. Changes in the nature of the
fluctuations identify QPTs. In some cases [6,7], nearest-
neighbor lattice-site entanglement or other standard en-
tanglement measures may suffice, but in general highly
nonlocal correlations or fluctuations, depending on the
physics and symmetries of the problem, may be required.
An extended analysis will be presented elsewhere [20].

We presented a generalization of entanglement beyond
the standard subsystem-based approach, as a feature of
states relative to any physically relevant distinguished
107902-4
subspace of observables. Besides linking entanglement
with the theory of coherent states, our results carry the
potential for a number of conceptual and practical ad-
vances. From a condensed-matter perspective, GE might
naturally provide measures of correlation strength useful
for establishing, for example, whether interactions within
a given quasiparticle description are sufficiently weak
for a mean-field theory to be meaningful. Conversely,
one might use a typology of GE to better understand
situations where mean-field theory is not easily applied.
For QIP, our formalism can give additional insight into
standard entanglement theory and suggest novel mea-
sures for multipartite correlations. By scaling system
sizes, asymptotic measures can be obtained for investi-
gating information-theoretic or thermodynamic limits,
with possible uses in renormalization group analyses.
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