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Domain Wall Creep in Magnetic Wires
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2Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud, 91405 Orsay Cedex, France
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The dynamics of a 1D domain wall (DW) in magnetic wires patterned in 2D ultrathin Co films is
studied as a function of the wire width w0. The DW velocity v�H� is hugely reduced when w0 is
decreased, and its field dependence is consistent with a creep process with a critical exponent � � 1=4.
The effective critical field scales as (1=w0). Measurements of v�H� in wires with controlled artificial
defects show that this arises from the edge roughness introduced by patterning. We show that the creep
law can be renormalized by introducing a topologically induced critical field proportional to �1=w0�.
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magnetic film is a very good model system to study the
creep process in a confined 2D geometry.

large nucleation area [5,21] to one of the current probes.
When entering into the wire, the single DW behaves as a
Precise control of magnetization reversal in patterned
magnetic nanostructures is a key parameter for future
applications. Recently, it has been demonstrated [1,2] that
magnetic elements could perform basic logic operations
analogous to semiconductor electronics. The interest in
magnetic logic devices lies in the growing importance of
innovative schemes such as reprogrammable logic and
reconfigurable computing [3]. A very promising scheme
based on magnetic domain wall (DW) propagation in
magnetic nanostructures has been proposed [1]. This
new feature involves a precise driving of a DW in a
nanoscopic circuit. Understanding how a DW propagates
in small elements [4–6] is then of crucial importance.

In continuous magnetic films, the propagation process
of a DW driven by a magnetic field results from the
competition between an elastic energy that acts to
straighten the DW and a quenched structural disorder
which tends to roughen it by local pinning. Such a motion
of an elastic object in the presence of weak disorder is
involved in a wide range of systems [7–14]. In particular,
the response of the system to a small external force f
(well below the critical depinning force fc) in the pres-
ence of thermal fluctuations is a very challenging prob-
lem. In that case, a weak pinning potential can lead to
diverging barriers when f ! 0 [7,15] and a so-called
nonlinear collective creep regime where the velocity is
of the form v / exp���Uc�fc=f�

��, where � � 1=kT
and Uc is a scaling energy constant. The exponent � is
characteristic of the disorder and of the dimensionality of
the system. The creep law has been recently verified in 2D
ultrathin magnetic films either in the presence of a
quenched disorder [9] or in the presence of a correlated
defect [10,11]. However, quantitative studies of creep
phenomena in magnetic nanostructures are clearly
needed since the reduction of lateral dimensions and
additional pinning potential introduced by the patterning
processes can lead to a very different behavior [16,17]. In
that way, a 1D DW propagating in a patterned 2D ultrathin
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In this Letter, we investigate the dynamics of a 1D DW
in magnetic wires with a different width w0 patterned in
ultrathin magnetic films. For all widths, the DW motion is
compatible with a creep process with a critical exponent
� � 1=4. The effective critical field varies as �1=w0�. We
demonstrate that this arises from the edge roughness
introduced by patterning. Our system is based on epitax-
ial Pt�3:4 nm�=Co�tCo�=Pt�4:5 nm�=Al2O3 ultrathin films
showing high perpendicular anisotropy (Ku 	 1

107 ergs=cm3) [18]. We focused our study on Co thick-
nesses tCo � 0:5 and 1 nm where dipolar effects are
negligible. Since the thickness of the Co layer is much
smaller than the DW width ( 	 10 nm), DWs can be
treated as Bloch walls where the effective anisotropy
includes dipolar energy as Keff � Ku � 2�M2

S and MS
is the saturation magnetization [5,19]. These films can
be considered as realistic 2D Ising systems because of
narrow DWs, perpendicular orientation, and uniform
magnetization across the film thickness. The pinning
potential results mainly from very homogeneously dis-
tributed defects such as boundaries between crystallites
and atomic steps at interfaces [18,20]. These defects can
be considered as weakly pinning point defects with
quenched-like disorder affecting the propagation of the
DW [11,13]. Because of such a high quality of the films,
magnetization reversal is characterized by easy DW mo-
tion, following rare nucleation events. Our group has
shown [11] that these 2D films are particularly appropri-
ate for creep process studies by measurement of an ex-
ponent � � 1=4 in very good agreement with the
theoretical predictions.

Following previous studies [5], we used the extraordi-
nary Hall effect to detect with a very high sensitivity the
propagation of a single DW in submicron size wires.
Double symmetric Hall cross devices were patterned us-
ing electron beam lithography and ion beam etching. As
can be seen in the magneto-optic (MO) image in Fig. 1, a
single DW was injected into the device by adjoining a
2004 The American Physical Society 107202-1



FIG. 2. (a) Average DW velocity as a function of H1=4 for 1.5,
1, 0.6, and 0:5 �m wide wires patterned in a 1 nm thick Co
layer. (b) Effective critical field Heff

c as a function of �1=w0�.

FIG. 1. Time dependence of the longitudinal voltage VR dur-
ing magnetization reversal. The first (second) step corresponds
to the DW moving inside the first (second) cross. The inset
shows the sketch of voltage measurement and a MO image
indicating a single domain nucleation in the large magnetic
area (tCo � 1 nm).
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1D nano-object propagating in a confined 2D geometry
[5]. By measuring the time dependence of VR in a fixed
field H, and using the fact that VR is proportional to the
extraordinary Hall voltage difference VH1 � VH2, one can
precisely deduce the average DW velocity v�H� inside the
connecting wire as can be seen in Fig. 1. Results are
shown in Fig. 2(a) where logv�H� vs H�1=4 is plotted
for four different wire widths ranging from 0.5 to 1:5 �m
patterned in a 1 nm thick Co layer. Surprisingly,
we observe a huge reduction of the velocity v�H�
when the wire width is reduced, which indicates an
increase of the energy barrier for DW motion. For all
widths, the straight lines of Fig. 2(a) indicate that the
data are compatible with a creep formula v�H� �
v0 exp�� �Ucw�Hcw=H�1=4�, where Hcw and Ucw are,
respectively, the critical field and the scaling energy con-
stant in the wire. Note that we have also tested logv�H� vs
�1�H=Hcw�

� and �Hcw=H�� for � and � values ranging
from 0.05 to 1. The value � � 1=4, which was already
found in similar but unpatterned continuous films [9,11],
is expected in the case of a one dimensional interface
moving in one transverse direction. The width w0 �
1:5 �m corresponds to the highest velocity and a curva-
ture at high fields is observed which suggests that the
system leaves the creep regime. Figure 2(b) indicates that
the effective critical field Heff

c � ��Ucw�
4Hcw deduced

from the slope of the curves in Fig. 2(a) scales as
�1=w0�. This dependence leads us to believe that the
reduction of v�H� is induced by a mechanism linked to
the edges of the magnetic wires. Since Heff

c reflects the
strength of the pinning potential, we have checked the
quality of the wires by using scanning electron micros-
copy. Although no patterning-induced major defects are
visible, for all wires a slight sinusoidal-like edge rough-
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ness (period 	 200 nm; amplitude 	 20 nm) is present
which is more or less symmetric on both sides of the wire.

We now show that such an edge roughness (ER) can
lead to the 1=w0 dependence observed in Fig. 2(b). As
seen in Fig. 3(a), we have fabricated wires with strong
artificially induced ER of the simple form w�x� � w0 �
2aj sin�kx�j (x is the position along the wire, w�x� is the
wire width, w0 is a constant width, a is the amplitude of
the roughness, and k � �=p is its wave vector) by con-
tacting lithographically made circles. Figure 3(b) shows
logv�H� vs H�1=4 for a wire of width w0 � 1 �m exhib-
iting either natural roughness (a � 10 nm and p �
200 nm) or strong artificial roughness (a � 200 nm and
p � 1 �m), compared to the dependence inside the large
reservoir assumed to display the intrinsic properties of
the nonpatterned film (as determined by a MO micros-
copy study). The three velocity measurements have been
done in the same sample patterned in a 0.5 nm thick
Co layer. We observe a reduction of the DW velocity in-
side the ‘‘natural’’ wire by about 1 order of magnitude
with respect to the reservoir. This clearly indicates that
additional pinning effects drive the DW dynamics in
magnetic wires. But the most important feature is that
107202-2



FIG. 3. (a) DW propagating in a wire where the lateral width
is varying as w�x� � w0 � 2aj sin�kx�j and scanning electron
microscopy (SEM) image after the resist writing process of a
wire with artificial ER of form w�x� (a � 200 nm; p � 1 �m).
(b) Average DW velocity inside a wire of 1 �m with natural ER
(a � 10 nm; p � 200 nm) and with artificially induced ER (a)
patterned in the same 0.5 nm thick Co layer, compared to the
DW velocity inside the large reservoir.
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the velocity is further reduced by the presence of the
strong artificial ER. This result is a striking confirmation
of the influence of edge modulation on DWdynamics. The
data for the wires with natural and artificial roughness
are also consistent with the creep formula with � � 1=4,
whereas in the reservoir for the same field range a differ-
ent thermally activated behavior due to a lowest energy
barrier is observed.

Next we discuss how the ER can influence DW creep in
the magnetic wires. The first possibility is that ER could
lead to additional ‘‘intrinsic’’ pinning. Typically, a defect
can pin the DW only if its spatial extension along the
direction of propagation is of the order of the DW width
�	 10 nm [7]. However, as the typical extension of the
edge roughness p is much larger than � (here p 

200 nm), the ER cannot lead to intrinsic pinning.
Another possibility is a topological effect due to the
roughness-induced modulation of the DW length when
the DW propagates along the wire. In the following, we
show that such a variation of the DW length can be taken
into account by introducing a position dependent macro-
scopic field. Consider a straight DW of length L reaching
the input of a magnetic wire of width w�x� [Fig. 3(a)]. To
propagate under an applied field H, the DW has to change
its length. First, let us neglect the presence of intrinsic
structural defects. Its static properties can be energeti-
cally described by the balance between wall energy
(which favors a reduction of the wall length) and
Zeeman energy (increasing the reversed area). If the
DW center propagates by dx and the corresponding
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reversed surface is dS, the wall energy and Zeeman en-
ergy variations are dE� � �tCo�@L=@x�dx, where � �
4�AKeff�

1=2 is the wall energy per unit surface (A is the
exchange stiffness), and dEZ � �2MSHtCo�@S=@x�dx.
The change of total energy is dEtot=dx � �tCo�dL=dx� �
2MSHtCo�dS=dx�. This energy is minimized at a given
position x of the wire by the field

Htop�x� �
�

2Ms

�
dL
dS

�
x
: (1)

This topological field is either positive when dw=dx > 0
(dL > 0) or negative when dw=dx < 0 (dL < 0). If
dw=dx � 1, the DW is bent [5,22]. Here, however, as
w�x� varies smoothly (the aspect ratio a=p � 1 is small),
it is a good approximation to consider that the DW
remains straight; i.e., L�x� � w�x�. Now let us consider
how this topologically induced field Htop�x� can lead
to the observed creep process using an approach from
collective pinning theory developed for vortices in super-
conductors [7]. In an unpatterned film, the total free-
energy functional for a segment L of a DW moving in
the x direction under an external force F per unit surface
is [9]

E�u� � "el
u2

L
� �%2L&�1=2 � FtCoL

u
2
; (2)

where u�x� denotes the amplitude of the displacement of
this segment, "el � �tCo is the elastic tension per unit
length, & scales the pinning strength of the disorder, and
% is the characteristic length of the disorder. The first and
second terms are the elastic and the pinning energies,
respectively. This equation is used to describe the energy
involved in DW propagation as a succession of rigid
microscopic segments of length Lc (Larkin length) inter-
acting with a quenched disorder over a typical length
scale %. This equation neglects the DW bending and is
valid only for F 	 Fc, where Fc is the critical force. In an
unpatterned magnetic film, the last term is simply the
Zeeman energy given by �MstLuH. The way to take into
account the influence of the edge modulation in Eq. (2) is
to consider a DWof length L which propagates under the
action of a macroscopic external field H �Htop�x�, where
Htop�x� is given by Eq. (1) (the sign is negative since a
positive topological field acts as a restoring force). The
total force term in Eq. (2) is thus �MstLu�H �Htop�x��.
By minimizing E�u� for H � 0 and setting u � % [9]
for each position x one gets the position dependent
collective pinning length in the wire Lcw�x�, beyond
which the DW adjusts elastically to the potential in order
to reach an optimal local configuration. To first order
we find Lcw�x� � Lcf1�

2
3 �Htop�x�=Hc�g, where Lc �

�"2
el%

2=&�1=3 and Hc � �"el%=MSt��1=Lc�
2 are, respec-

tively, the Larkin length and the critical field due to the
quenched disorder in the nonpatterned film (in our films %
and Lc can be estimated to be 30 nm and 50 nm, respec-
tively). This shows that the straightness of the DW can be
artificially tuned by tailoring Htop�x�. Finally, the critical
107202-3



FIG. 4. Typical potential landscape �Hcw=H�1=4 vs x (for H �
200 Oe and Hc 	 400 Oe) for the wire of natural roughness of
Fig. 3(b). The dashed line represents the potential without ER.

P H Y S I C A L R E V I E W L E T T E R S week ending
12 MARCH 2004VOLUME 92, NUMBER 10
field Hcw of the wire is found by equating the force and
the pinning terms for L � Lcw [7]. This immediately
leads to Hcw�x� � Hc �Htop�x�. Thus the creep law can
be renormalized by introducing an effective critical field
Hcw�x� which is simply the sum of the critical field due
to the quenched disorder and a topologically induced
field due to the modulation of the DW length; i.e., v�H� �
v0 expf��Ucw��Hc �Htop�x��=H�1=4g.

As an example, Fig. 4 shows a typical creep potential
landscape �Hcw�x�=H�1=4 vs x calculated by using Eq. (1)
for a straight DWof length L�x� � w0 � 2aj sin�kx�j. The
potential presents a valley at each constriction. At this
position, the DW has to overcome an energy barrier
which is maximum because Htop�x� reaches its highest
value Hmax

top . Equation (1) with this L�x� yields Hmax
top �

��=Ms��ka=w0� (Hmax
top 	 20 Oe for the natural ER and

	70 Oe for the artificial one). This indicates that the
constrictions can be considered as the most favorable
metastable states inside the magnetic wire as we have
checked by quasistatic MO measurements. In the creep
regime, when H � Hcw larger DW segments [scaling as
Lopt � Lcw�Hcw=H�3=4] and longer DW hops [scaling as
u�Lopt� � uc�Lopt=Lcw�

2=3] are involved in order to find
the next favorable metastable state [7]. As Htop�x� � Hc
(here Hc 	 300–900 Oe), then Lcw�x� � Lc. Considering
an applied field H 	Hc=4, uc 	 %	 30 nm and Lc 	
50 nm, we estimate Lopt 	 140 nm and u�Lopt� 	 60 nm.
In the wires, the DW is thus made of a few segments
and jumps only a few times between each constriction.
One can consider that at position x a hop between
two metastable states takes an average time given by
(�H; x� / exp��Ucw�Hcw�x�=H�1=4�, so that the total aver-
age time measured in our experiment (Fig. 1) is mainly
dominated by the longer times needed to overcome
the energy barrier at constrictions where Hcw is maxi-
mum. A good approximation is thus to consider that the
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critical field in the wire is simply Hc �Hmax
top �

Hc � ��=Ms��ka=w0�. The most striking result is that
Hcw is found to be proportional to 1=w0 which is in
agreement with the experimental results of Fig. 2(b).
Finally, we estimate the experimental (theoretical) ratio
Sexp�theo� � Hcw�natural�=Hcw�artificial� for the wires with
natural and artificial roughness of Fig. 3(b).We find values
Sexp � 0:88� 0:05 and Stheo � 0:94 which are in reason-
able correspondence.

In summary, we have shown that in magnetic wires,
due to the ER, the creep process is renormalized with
respect to a nonpatterned film by introducing an effec-
tive critical field proportional to 1=w0. As a consequence
the edge modulation can be artificially tuned to con-
trol precisely the DW motion and the DW straightness.
These features are promising for applications to high
density magnetic logic devices and high density magnetic
recording.
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