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We discuss microscopic aspects of the odd-parity triplet pair in orbital degenerate systems. From the
concept of off-diagonal long-range order, a pair state is unambiguously defined as the eigenstate with
the maximum eigenvalue of a pair correlation function. Performing this scheme by a numerical
technique, we clarify that the odd-parity triplet pair occurs as an out-of-phase combination of local
triplets induced by Hund’s rule coupling for the lattice including two sites in the unit cell.
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coupling, which stabilizes the local triplet pair composed
of a couple of electrons between different orbitals. Then,

with spin � in the orbital � on the site � included in the
unit cell i. We consider the Fourier transform of ci��� as
Recently triplet superconductivity has been found in
several compounds with strong electron correlation. A
pioneering material should be UPt3 [1], which has been
considered to have spin-triplet pairing from experimental
evidence for multisuperconducting phases similar to the
phase diagram of 3He. The odd-parity triplet pair has
been eventually confirmed by the experimental fact that
the Knight shift does not change through the supercon-
ducting transition temperature Tc [2]. In other f-electron
compounds, triplet superconductivity has also been sug-
gested. For instance, coexistence of superconductivity
and ferromagnetism has been discovered in UGe2 [3]
and URhGe [4]. It is naively believed that a spin-triplet
pair appears in the ferromagnetic (FM) phase. Recently
UNi2Al3 has also been considered as a triplet supercon-
ductor from NMR measurements [5].

Among transition metal oxides, Sr2RuO4 has attracted
much attention since its discovery in 1994 [6]. It is con-
firmed that this material has a spin-triplet pair from
NMR measurements [7], although it is isostructural to
La2CuO4, which is the mother compound of high-Tc cup-
rates with singlet d-wave superconductivity. In the
d-electron system such as ZrZn2, it has also been reported
that superconductivity appears in the FM phase [8] and
spin-triplet pairing is expected to occur in this material.

Regarding the mechanism of triplet superconductivity,
FM spin fluctuation was considered to mediate the triplet
pair also in strongly correlated materials by analogy with
superfluid 3He. However, paramagnons are not always
dominant in the spin fluctuation spectrum of those mate-
rials. In fact, in Sr2RuO4, significant enhancement of the
incommensurate antiferromagnetic spin fluctuation has
been observed in neutron scattering experiments [9].
Namely, in contrast to the naive expectation, paramag-
nons do not always play a central role in the occurrence of
triplet superconductivity in the solid state. It is still a
puzzling and challenging problem to clarify a key issue
to determine the Cooper-pair symmetry.

One possible scenario is based on the Hund’s rule
0031-9007=04=92(10)=107007(4)$22.50 
the triplet superconductivity is naively expected to occur,
but in such a local picture, it is questionable whether the
anisotropic Cooper pair is stabilized or not. This point
has cast a serious doubt on the scenario, but in the course
of the investigation on UPt3, it has been pointed out that
an odd-parity triplet pair is realized only when the
inversion center exists external to the f-shell ions [10].
This has been further examined by the detailed group-
theoretical analysis [11] and the estimation of pairing
potential with the use of band-calculation results [12].
However, the discussions have been on a phenomenologi-
cal level, and it is highly required that the triplet pair
induced by the Hund’s rule coupling should be investi-
gated from the microscopic viewpoint.

In this Letter, we attempt to gain an insight into triplet
pairing induced by Hund’s rule coupling. First, we recon-
sider the symmetry argument on triplet pair in the weak-
coupling limit. It is again found that the odd-parity triplet
pair induced by the Hund’s rule interaction occurs only
for the non-Bravais lattice. In order to confirm this result
from the microscopic viewpoint, we carefully analyze an
orbital degenerate model on the two-dimensional (2D)
square and honeycomb lattices. It is emphasized that the
pair state is determined unambiguously by diagonalizing
the pair correlation function based on the concept of off-
diagonal long-range order [13]. Then, we can visualize
the pair wave function in an unbiased manner, clearly
indicating that the odd-parity triplet pair in the FM phase
occurs as an out-of-phase combination of local triplets
induced by Hund’s rule coupling in the 2D honeycomb
lattice with two sites in the unit cell.

Let us start our discussion on the Cooper-pair ampli-
tude in the lattice with inversion symmetry. The pair
operator composed of a couple of electrons is defined in
the second quantized form as

�i���; j	
� � ci���cj	
�; (1)

where ci��� is an annihilation operator of an electron
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ci��� �
X

n;k

eik�Ri�kn
��akn�; (2)

where akn� is an annihilation operator for an electron
with momentum k and spin � in the nth band. Note that
�kn
�� is the matrix element of the unitary transformation

between orbitals and bands.
Now let us consider the Cooper pair of which the total

momentum is equal to zero in the weak-coupling limit.
Then, the Cooper-pair amplitude is given by

h�i���; j	
�i �
X

n;k

eik��Ri�Rj��kn
���

�kn
	
 hakn�a�kn�i: (3)

Note that the Cooper pair is formed only by a couple of
electrons on the same electronic band, since the pair
composed of electrons in different bands is not stable in
general in the weak-coupling limit.

Here we introduce an inversion operator P , which acts
generally on the electron operator as

P ci���P�1 � P�ci	��; (4)

where P� denotes the parity for the inversion of atomic
orbital, depending on the angular momentum. In this
Letter, we assume the pairing in the orbitals with the
same angular momentum, indicating P� � P
.

For the Bravais lattice in which one site is included in
the unit cell, typically the square lattice shown in
Fig. 1(a), the inversion center is located on the site.
Thus, we can simply suppress the indices � and 	 in
this case. Combining Eqs. (2) and (4), we obtain

�kn
� � P��

�kn
� ; (5)

for the Bravais lattice. On the other hand, for the non-
Bravais lattice, � is not equal to 	 in Eq. (4). As a typical
example, here we consider the honeycomb lattice com-
posed of unit cells including two sites, as shown in
Fig. 1(b). In this case, the inversion center is located at
the center of two sites and we obtain

�kn
1� � P���kn

2� : (6)

First we consider the Cooper pair in the Bravais lattice.
Note again that the index � is suppressed in this case.
1 2

a1

(b)(a)

x
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FIG. 1. (a) Two-dimensional square and (b) honeycomb
lattices. Thin lines in (a) denote an eight-site cluster, while in
(b), they indicate an eight-site cluster composed of four unit
cells including two sites, 1 and 2. Thick arrows define vectors
a1 and a2.
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After algebraic calculations, spin singlet (S) and triplet
(T) pairs are, respectively, given by

h�Si�; j
i �
X

n;k

cos�k � �Ri �Rj�	�
�kn
� �kn


 Skn; (7)

and

h�T;zi�; j
i �
X

n;k

i sin�k � �Ri � Rj�	�
�kn
� �kn


 T
z
kn; (8)

where Skn � �hakn"a�kn#i � hakn#a�kn"i�=
���
2

p
, T1

kn �
hakn"a�kn"i, T0kn � �hakn"a�kn#i  hakn#a�kn"i�=

���
2

p
, and

T�1
kn � hakn#a�kn#i. As expected, spin singlet and triplet

pairs have even and odd parity, respectively.
Note here that the magnitude of the on-site pair am-

plitude vanishes for the odd-parity triplet pair, while for
the singlet case, it depends on the symmetry of the
Cooper pair. As is well known, the Hund’s rule coupling
stabilizes the local triplet pair composed of electrons in
different orbitals, inevitably leading to the orbital anti-
symmetric pair with a finite on-site amplitude [14].
However, such an even-parity triplet pair does not appear
in the weak-coupling limit. In order to make this point
clear, it is instructive to consider the on-site pair ampli-
tude in the two-band model on the Bravais lattice. After
simple algebraic calculations, we obtain hci��ci
�i �P

khak1�a�k2�i for � � 
. Namely, the triplet pair in-
duced by the Hund’s rule coupling should be composed of
electrons on different bands, which is not stable in the
weak-coupling limit [15]. We conclude that for the
Bravais lattice, an odd-parity triplet pair cannot be in-
duced by the Hund’s rule coupling.

Next we turn our attention to the pair formation in the
non-Bravais lattice, typically the honeycomb lattice. For
simplicity, we consider only the on-site pair amplitude.
Using Eqs. (3) and (6), for even-parity singlet and odd-
parity triplet pairs, we obtain

h�Si1�; i1
i � �1=2�
X

n;k

��kn
1��

�kn
1
 ��kn

2� �kn
2
�Skn; (9)

and

h�T;zi1�; i1
i � �1=2�
X

n;k

��kn
1��

�kn
1
 ���kn

2� �kn
2
�T

z
kn; (10)

respectively. Note that, in general, h�T;zi1�; i1
i does not
vanish. In order to understand this point, it is useful to
note the relation

h�T;zi1�; i1
i � �h�T;zi2�; i2
i: (11)

The pair satisfying this relation is composed of the local
triplet pairs in the unit cell in an out-of-phase manner, as
schematically shown in Fig. 2(a). Then, the odd-parity
triplet pair induced by the Hund’s rule coupling can
appear in the non-Bravais lattice.

We believe that the above symmetry argument is use-
ful, but it mentions nothing about the stability of the
odd-parity pair. For instance, the in-phase combination
107007-2
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of local triplet pairs with even parity [see Fig. 2(b)] seems
to dominate the odd-parity pair at a first glance, but the
above discussion does not conclude which pair is stabi-
lized. In order to complete the discussion, we cannot
avoid carrying out some explicit calculations in an appro-
priate model. However, if we apply mean-field approxi-
mations on the model in which attractive interactions are
introduced just by hand, we may lose essential points.
+ _(a) (b)

site 1 site 2 site 1 site 2

+

FIG. 2. Schematic views for wave functions of (a) odd-parity
and (b) even-parity triplet pairs in the honeycomb lattice.

107007-3
Thus, in this Letter, we adopt the orbital degenerate
Hubbard model, which is widely believed to be a standard
model for strongly correlated electron systems. Further-
more, in order to obtain unbiased results, we resort to the
numerical method such as exact diagonalization. For the
purpose of analyzing the pairing symmetry in the nu-
merical calculation, we apply the method of the optimi-
zation of the pair correlation function [14].

Here we take the eg-orbital Hubbard model as [16]
H � �
X

hi�;j	i

X

�;�;


tv�
�c
y
i���cj	
�  H:c:� U

X

i;�;�

�i��"�i��# U0=2
X

i;�

X

��


�i���i�


 J=2
X

i;�

X

�;�0;��


cyi���c
y
i�
�0ci���0ci�
�  J

0
X

i;�

X

��


cyi��"c
y
i��#ci�
#ci�
"; (12)
0.0 1.0 2.0 3.0 4.0
U’-J

2.0

2.5

3.0

E
ig

en
va

lu
es

 o
f P

PM
0.0 2.0 4.0 6.0 8.0

0.0

2.0

4.0

6.0

8.0

FM

U'

J n=0.75
U=U’+2J, J’=J

(a) honeycomb lattice
8-site

(b)

even-parity

odd-parity

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.2

-0.1

0.0

0.1

0.2

(c)  a=(0,0) (d)  a=a1

(e)  a=a2 (f)  a=a +a1

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.2

-0.1

0.0

0.1

0.2
2

odd-parity
even-parity

ϕ
µa

,ν
b

ϕ
µa

,ν
b

ϕ
µa

,ν
b

ϕ
µa

,ν
b

U’-J=1 U’-J=1

U’-J=1 U’-J=1
where hi�; j	i denotes a pair of nearest-neighbor sites, v
indicates a vector connecting the nearest-neighbor sites,
� (
) denotes the x2 � y2 (3z2 � r2) orbital, �i��� �
cyi���ci���, and �i�� �

P
��i���. In the first term, tv�


is a hopping amplitude depending on orbitals, hopping
directions, and lattice type. Hereafter ty�� along the y
direction (see Fig. 1) is taken as the energy unit. In the
Coulomb interaction terms, U, U0, J, and J0 denote intra-
orbital, interorbital, Hund’s rule, and pair-hopping inter-
actions, respectively. Note the relations of U � U0 
J J0 and J � J0.

First, let us briefly discuss the ground-state phase dia-
grams for two types of 2D lattices with eight sites (see
Fig. 1). In Fig. 3(a), the phase diagram for the eight-site
honeycomb lattice is shown for n � 0:75. When J is
increased, the FM phase appears, since it can gain the
kinetic energy for large J. This is quite general in the
orbital degenerate model. For n � 1 (not shown here),
the FM phase is also found, but the region becomes
narrow: It does not touch the line of J � U0. For the 2D
square lattice with eight sites, the phase diagram for n �
1:5 is quite similar to Fig. 3(a) (see Ref. [14]). For n � 1,
the phase diagram is also similar to that of the honey-
comb lattice with n � 1. For n � 0:75, the FM phase
disappears in the square lattice.

Now we focus on the pair in the FM phase to clarify
the symmetry of triplet pair induced by the Hund’s rule
coupling. For this purpose, we measure the triplet pair
correlation function, defined as P � h!!yi, where ! is a
triplet pair operator given by a linear combination of
�T;zi��; j	
. The coefficient of each component includes
information about pairing symmetry. The pair wave func-
tion should be determined as the eigenfunction with the
maximum eigenvalue of P [14]. The pairing state thus
determined, called ‘‘optimized pair,’’ is the most prob-
able candidate for the Cooper pair in actual systems.

Before proceeding to the exhibition of numerical re-
sults, let us briefly discuss the meaning of the optimized
pair from the conceptual viewpoint of off-diagonal long-
range order [13]. In principle, the occurrence of super-
conductivity is detected when the maximum eigenvalue
�max of P becomes the order of N, where N is the num-
ber of electrons. In a small cluster calculation, the pos-
sible superconducting pair state should be defined by the
1α1β 1α2β 2α1β 2α2β 1α2α 1β2β
-0.3

1α1β 1α2β 2α1β 2α2β 1α2α 1β2β
-0.3

FIG. 3. (a) Ground-state phase diagram for eight-site honey-
comb lattice with n � 0:75. Note that the region for J > U0 is
unphysical. (b) Maximum and second maximum eigenvalues of
P as a function of U0 � J in the FM phase. Coefficients of the
odd- and even-parity triplet pair correlation functions for
(c) a � �0; 0�, (d) a � a1, (e) a � a2, and (f) a � a1  a2,
for U0 � J � 1.
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eigenstate with �max, but in order to prove the existence of
off-diagonal long-range order, it is necessary to show that
�max actually becomes the order of N with increasing the
system size. However, at some cluster size, a possible
pairing state is determined without ambiguity by the
eigenstate with �max.

In Fig. 3(b), we show the eigenvalues of P in the FM
phase of the honeycomb lattice for n � 0:75. For smallU0,
the eigenstate of P corresponding to �max exhibits odd
parity, while the even-parity state appears for a large
value of U0 [17]. As discussed below, the symmetry of
those pairing states are consistent with the schematic
views shown in Figs. 2(a) and 2(b). In the fully spin-
polarized phase, the relevant interaction is U0 � J. Then,
small U0 � J corresponds to the ‘‘weak-coupling’’ region
in the FM phase. In that sense, it seems natural that the
odd-parity state appears for small U0 � J, while the even
parity occurs for large U0 � J.

In order to visualize the paring symmetry, we explic-
itly express the pair operators as

! �
X

i;a

�’a
1�;1
ci1�"cia1
"  ’

a
1�;2
ci1�"cia2
"

 ’a
2�;1
ci2�"cia1
"  ’

a
2�;2
ci2�"cia2
"

 ’a
1�;2�ci1�"cia2�"  ’

a
1
;2
ci1
"cia2
"�;

(13)

where a is a vector connecting two unit cells. See Fig. 1(b)
for the definitions of a in the honeycomb lattice.

In Figs. 3(c)–3(f), we depict the coefficients ’a
�a;	b for

each a and U0 � J � 1 [18]. The symmetry argument in
the weak-coupling limit has suggested that the odd-
parity triplet pair should satisfy the relations, ’a

1�;1
 �
�’a

2�;2
 and ’a
1�;2
 � �’a

2�;1
 [19]. In Fig. 3(c), these
relations are actually satisfied in the pair correlation in-
side the unit cell for a � �0; 0�, indicating unbiased evi-
dence for the odd-parity triplet pair. As shown in
Figs. 3(d)–3(f), the above relations for a � �0; 0� are
also observed for a � �0; 0� and the pair amplitudes for
a � �0; 0� are in the same order as those for a � �0; 0�.
These results indicate that the triplet pair spatially ex-
tends to gain the kinetic energy by keeping the odd-parity
symmetry. Here, note an in-phase relation in the coeffi-
cients for the a2 direction, while an out-of-phase relation
for the a1 direction suggests a node structure between the
unit cells along the a1 direction. Namely, the p-wave-like
pair appears in this case. Note also another relation
’a

1�;2� � �’a
1
;2
 for the odd-parity pair, indicating

the node of the pair wave function in the orbital space.
Finally, we briefly comment on actual compounds

from the present result. First, the odd-parity triplet pair
in the FM phase induced by the Hund’s rule coupling is
expected to occur in some f-electron compounds such
as UGe2 and URhGe, although further quantitative cal-
culations are needed based on more realistic models.
Second, the triplet pair in ruthenate may not be induced
107007-4
by the local Hund’s rule interaction, since the ruthenate is
described by the t2g-orbital degenerate Hubbard model on
the 2D square lattice. Rather, we may consider a scenario
based on the pairing induced by the effective interaction
among quasiparticles in the Fermi-liquid theory [20].

In summary, we have discussed microscopic aspects of
the odd-parity triplet pair. The weak-coupling analysis
has suggested that the odd-parity triplet pair induced by
the Hund’s rule coupling does not appear in the Bravais
lattice. We have carefully analyzed the triplet pair wave
function in the FM phase on the 2D square and honey-
comb lattices. It has been clarified that the odd-parity
triplet pair induced by the local Hund’s coupling occurs
only for the non-Bravais lattice.

The authors are separately supported by the Grant-in-
Aid for Scientific Research from Japan Society for the
Promotion of Science.
[1] G. R. Stewart et al., Phys. Rev. Lett. 52, 679 (1984).
[2] H. Tou et al., Phys. Rev. Lett. 77, 1374 (1996).
[3] S. S. Saxena et al., Nature (London) 406, 587 (2000).
[4] D. Aoki et al., Nature (London) 413, 613 (2001).
[5] K. Ishida et al., Phys. Rev. Lett. 89, 037002 (2002).
[6] Y. Maeno et al., Nature (London) 372, 532 (1994).
[7] K. Ishida et al., Nature (London) 396, 658 (1998).
[8] C. Pfleiderer et al., Nature (London) 412, 58 (2001).
[9] Y. Sidis et al., Phys. Rev. Lett. 83, 3320 (1999).

[10] P.W. Anderson, Phys. Rev. B 32, 499 (1985).
[11] J. Appel and P. Hertel, Phys. Rev. B 35, 155 (1987).
[12] M. R. Norman, Phys. Rev. Lett. 72, 2077 (1994); Phys.

Rev. B 50, 6904 (1994).
[13] C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).
[14] T. Hotta and K. Ueda, Phys. Rev. B 67, 104518 (2003).
[15] In the strong-coupling case, pair formation occurs in the

whole Fermi sphere. Namely, the pair can be formed by
electrons in different bands, leading to hybridization of
nondegenerate bands in the pair wave function.

[16] When we apply this model to f-electron systems, we
need to pay attention to the meanings of ‘‘spin’’ and
‘‘orbital’’ of f electron, as discussed in Ref. [14]. Note
also that it is allowed to define an eg-orbital Hubbard
model on the honeycomb lattice, since local orbitals
should be determined from the effects of ligand ions,
not directly related to the whole symmetry of the lattice.
Unfortunately, it is difficult to show actual materials
described by the present Hamiltonian, but this is the
minimal model with degenerate orbitals in the non-
Bravais lattice.

[17] T. Hotta and K. Ueda, J. Magn. Magn. Mater. (to be
published).

[18] The qualitative feature of the triplet pair in the FM phase
does not depend on the specific value of U0 � J.

[19] On the other hand, the even-parity triplet pair satisfies
relations ’a

1�;1
 � ’a
2�;2
 and ’a

1�;2
 � ’a
2�;1
 � 0.

[20] T. Nomura and K. Yamada, J. Phys. Soc. Jpn. 71, 1993
(2002).
107007-4


