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Spin-Current Shot Noise as a Probe of Interactions in Mesoscopic Systems
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It is shown that the spin-resolved current shot noise can probe attractive or repulsive interactions in
mesoscopic systems. This is illustrated in two physical situations: (i) a normal-superconducting junction
where the spin-current noise is found to be zero, and (ii) a single-electron transistor where the spin-
current noise is found to be Poissonian. Repulsive interactions may also lead to weak attractive
correlations (bunching of opposite spins) in conditions far from equilibrium. Spin-current shot noise
can also be used to measure the spin relaxation time T1, and a setup is proposed in a quantum dot
geometry.
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first consider a general mesoscopic device made of a noise is strictly zero, Ssp � 0. The current correlation
Nonequilibrium noise plays a key role in mesoscopic
physics [1]. Low-temperature correlations of the time
fluctuations of the electronic current indeed give unique
information about the charge and the statistics of quasi-
particles. For noninteracting electrons, the scattering ap-
proach is very powerful for a variety of systems [1–3].
The reduction of shot noise from the Schottky value
originates from the Pauli exclusion principle which for-
bids two wave packets with the same quantum numbers to
be superimposed [4]. On the other hand, Coulomb inter-
actions also act in correlating wave packets, and noise is
indeed more sensitive to interactions than the conduc-
tance. Coulomb interactions may decrease or increase
noise correlations, depending on the physical regimes
[5–7]. Full counting statistics are also promising as a
probe of interactions [8]. Yet, in a given mesoscopic
structure, the effects on the shot noise of Fermi statistics
and of interactions are intimately mixed. In contrast, we
propose in this Letter that spin-resolved shot noise can
unambiguously probe the effects of electronic interac-
tions. The basic idea is that the Pauli principle acts only
on electrons with the same spin. Therefore currents wave
packets carried by quasiparticles with opposite spins are
only correlated by the interactions.

Spin-resolved shot noise has received very little at-
tention up to now, contrary to the total current shot noise.
For instance, spin shot noise was recently considered in
the absence of charge current [9]. On the other hand, the
effect of a spin-polarized current on charge and spin
noise was investigated, with complex behaviors due to
spin accumulation [10]. Noise is also an efficient probe
for testing quantum correlations in two-electron spin-
entangled states [11–14] or electron spin teleportation
[15]. In contrast, we consider here simple and general
mesoscopic structures in which the average current is
not spin polarized, but where the currents carried by
quasiparticles with different spins can be separately mea-
sured. A possible setup for this purpose will be described
at the end of this Letter. To clarify our statement, let us
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normal metal with noninteracting electrons, nonmag-
netic terminals i; j; . . . ; and one channel for sim-
plicity (generalization is obvious). In the absence of
magnetic fields and spin scattering of any kind, the scat-
tering matrix is diagonal in the spin variable and spin
independent, s��

0

ij � ���0sij. This trivially leads to spin-
independent averaged currents hI�i i � hI��i i. In a similar
way, spin-resolved noise, defined as S��

0

ij �t� t0� �
1
2 h�I

�
i �t��I

�0

j �t
0� ��I�

0

j �t
0��I�i �t�i, where �I�i �t� �

I�i �t� � hI�i i can be evaluated. One easily finds that at
any frequency the noise power between terminals i and
j is diagonal in the spin variables, S��

0

ij �!� � ���0Sij�!�.
Thus, choosing an arbitrary spin axis z, the total (charge)
current noise Schij � S

""
ij � S

##
ij � S

"#
ij � S

#"
ij and the spin-

current noise Sspij � S
""
ij � S

##
ij � S

"#
ij � S

#"
ij, defined as the

correlation of the spin currents Ispi �t� � I
"
i�t� � I

#
i�t�, are

strictly equal. On the contrary, in the presence of
Coulomb interactions, one expects that S"#ij � S

#"
ij � 0, or

equivalently Sspij � Schij . This can happen for instance if
the scattering matrix couples carriers with opposite spins,
as Andreev scattering at a normal-superconductor (NS)
interface, or in quantum dots in the presence of strong
Coulomb repulsion. The sign of the correlation S#"ij (bunch-
ing or antibunching) is of special interest.

Let us first consider a NS junction, where S is a singlet
superconductor and N a normal metal. The scattering
matrix coupling electron (e) and holes (h) quasiparticles
in the metal is composed of spin-conserving normal
elements s��ee , s��hh , and Andreev elements s���eh , s���he
coupling opposite spins. The calculation of the total zero-
frequency noise Sch�

P
��0S��

0
, using the unitarity of the

scattering matrix, reduces at zero temperature to the well-
known result Sch � �4e3V=� �h�Tr�syheshe�1 � syheshe�,
where the trace is made on the channel indexes [16,17].
We remark here that it is easy to calculate the spin-
resolved correlations S�� and S���, and to check that
they are exactly equal. The result of this observation is
that for a NS junction, at T � 0, the spin-current shot
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between electrons with opposite spins is S"# � S"", there-
fore positive. This ‘‘bunching’’ of opposite spin carriers is
an obvious consequence of the Andreev process, since
each spin-up quasiparticle crossing the junction is accom-
panied by a spin-down quasiparticle. This nearly instan-
taneous correlation is due to the conversion of Cooper
pair wave packets in S, into pairs of normal wave packets
which carry no spin, therefore the spin-current noise is
zero. It has been discussed in a three-terminal geometry
in Ref. [18].

Let us now turn to a very different situation, that of a
quantum dot in the Coulomb blockade regime. Here,
instead of the attractive correlations manifested by the
NS junction, repulsive correlations are expected. Let us
consider a small island connected by tunnel barriers to
normal leads L and R with electrochemical potentials
�L;R, such as eV � �L ��R (Fig. 1). The spectrum of
this quantum dot is supposed to be discrete, e.g., the
couplings �L;R � 2�jtL;Rj2NL;R�0� to the leads verify
�L;R � �", the level spacing. We also assume that
max�eV; kBT� � �h�L;R and that only one level of energy
E0 sits between �R and �L. The dot can be in three
possible charge states, depending on whether the level
is occupied by zero, one, or two electrons (Fig. 1). These
states will be indexed as N � 0, N � 1 (with spins " , # ),
andN � 2. Let us denote asU�N� the Coulomb energy for
the state N, �E�

L;R�N� � E0 ��L;R �U�N � 1� �U�N�
the energy to add an electron to state N from leads L;R,
and �E�

L;R�N� � �E0 ��L;R �U�N � 1� �U�N� the
energy to remove an electron from state N towards
L;R. Let us further assume that �E�

L �0�, �E�
R �1� �

�kBT. This implies that the transitions from N � 0 to 1
involve electrons coming only from L, and the transitions
from N � 1 to 0 involve electrons going only into R. Let
us allow the Coulomb energy to vary and consider the
possibility of transitions from N � 1 to 2, only from L,
e.g., �E�

R �2� � �kBT. Yet, �E�
L �1� can take any value.

This describes the following situation: If �E�
L �1� � kBT,

the transition to state N � 2 is forbidden and one has
the simple single-electron transfer (SET) case with
only two charge states N � 0, 1, in the resonant regime
at low-temperature [Fig. 1(a)]. If, on the contrary,
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FIG. 1. The SET transport sequence (a) between charge states
N � 0 and 1, rates �L from reservoir L and �R to reservoir R;
(b) between charge states N � 1 and 2, rates x�L from reser-
voir L, �1� x��L to reservoir L and �R to reservoir R.
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�E�
L �1� � �kBT, then the three charge states 0, 1, 2

are involved in the charge transport [Fig. 1(b)]. The
physical situation under consideration corresponds, for
instance, to fixing the gate voltage such as U�1� � U�0�,
and varying the ratio between kBT and the Coulomb
excess energy U�2� �U�1�.

Let us write the master equation describing this sys-
tem [19–21]. Assuming a constant density of states in
the reservoirs and defining x as the Fermi function x �
f1� exp���E�

L �1�g
�1, the nonzero transition rates are

��
L �0� � �L, ��

R �1� � �R, ��
L �1� � x�L, ��

L �2� �
�1� x��L, and ��

R �2� � �R [Fig. 1(b)]. Then the popula-
tions p0, p", p#, and p2 verify

_pp0 � �2�L p0 � �R �p" � p#�;

_pp" � ���R � x�L�p" � �L p0 � ��1� x��L � �Rp2;

_pp# � ���R � x�L�p# � �L p0 � ��1� x��L � �Rp2;

_pp2 � �2��1� x��L � �Rp2 � x�L �p" � p#�: (1)

Let us first consider the limit x � 1. Then the transition
rates from L or into R do not depend on the charge state,
which means that this limit is equivalent to that of a
resonant state without Coulomb charging energy. The
solution of Eqs. (1) factorizes in this case, e.g., p�n"; n#� �
p�n"�p�n#�, so that for each spin component the probabil-
ities p�0� and p�1� of empty and occupied states verify
_pp�0� � � _pp�1� � ��Lp�0� � �Rp�1�. From this one de-

rives the average current hIi � 2e��L�R=��L � �R� and
the zero-frequency shot noise Sij�! � 0� � 2ehIi �
f1� �2�L�R=��L � �R�

2g, independently of the couple
of junctions i; j � L;R [22]. Moreover, it is simple to
check that spin " and # currents are uncorrelated, thus
S"#ij � S

#"
ij � 0, or equivalently Ssp � Sch, as can also been

derived by the scattering method in the quantum coherent
regime. We thus have another example of the general
behavior for uncorrelated transport.

Let us now consider the SET case x � 0, where
charge transport is maximally correlated. The charge
noise is given by the expression Sij�! � 0� � 2ehIi �
f1� �4�L�R=�2�L � �R�

2g [23]. Apart from an effec-
tive doubling of the rate �L, this result is qualitatively
similar to that obtained without interactions. Therefore
the charge noise is not the best possible probe of inter-
actions. We now show that, on the contrary, the behaviour
of the spin noise is completely different. Indeed, using the
method by Korotkov [24], we find that

S��ij � ehIi
�
1�

2�L�R
�2�L � �R�

2

�
;

S���ij � �ehIi
2�L�R

�2�L � �R�
2 ; Sspij � 2ehIi:

(2)

The striking result [Eq. (2)] for Ssp resembles a Poisson
result and corresponds to maximal fluctuations. The cor-
relations between currents of opposite spins are negative,
like a partition noise. Yet spin-up and spin-down channels
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are separated energetically rather than spatially, and
wave packets with up or down spins exclude each other
because of interactions rather than statistics.

The above result, obtained at zero temperature with
perfect spin coherence inside the island, can be inter-
preted in the following way: electrons come from reser-
voir L with random spins. Even though the average spin
current is zero, each junction is sequentially crossed —
due to Coulomb repulsion — by elementary wave packets
with well-defined but uncorrelated spins. This implies
very short time correlations (on the scale of tunneling
through one of the barriers) therefore the spin current
exhibits Poisson statistics. On the contrary, charge cur-
rent wave packets are correlated on times � �h=�i, leading
to the reduction as compared to the Poisson value. Notice
that Eqs. (2) is a consequence of the restriction to two
charge states: as can be easily checked, the analysis of the
SET involving only N � 1 and 2 states (instead of 0, 1)
yields exactly the same result.

The general solution of Eqs. (1) offers an interpolation
between the uncorrelated and the maximally correlated
regimes. We find that the average current is given by hIi �
ef2�L�R=��R � �2� x��Lg. The spin-current noise
components S��

0

ij �i; j � L;R� can also be calculated.
The expression for the spin noise is

Sspij � 2ehIi
�
1�

2x�L�R
��R � �L���R � x�L�

�
: (3)

The expression for the total (charge) noise Sch is too
lengthy to be written here. Figures 2 and 3 show the
variation with x of the charge and spin-current noise.
The spin noise is maximum for x � 0, decreases monoto-
nously, and merges the charge noise at x � 1. The role of
the asymmetry of the junctions is very striking. First, if
�R > �L, we find that Ssp is always larger than Sch (Fig. 2),
as in the ideal SET (x � 0). On the other hand, if �R <
�L, Ssp happens to be smaller than Sch for x >
xc � �R=�L (Fig. 3). This implies that S"# > 0, contrary
to the naive expectation for repulsive interactions. This
FIG. 2. Spin shot noise and charge shot noise in the SET, as a
function of x (see text): x � 0 denotes the maximal correlation
and x � 1 the uncorrelated case. �R � 2�L: antibunching of
opposite spins.
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unexpected behavior can be explained as follows: if
�R < �L, the low charge states are unfavored and the
high ones favored, despite Coulomb repulsion: for x >
xc , p�2� becomes larger than p�0�. When the SET occa-
sionally reaches the state N � 0, a first transition leads to
state 1, but then the most probable transition is to state 2
since ��

L �1� � x�L > ��
R �1� � �R: two electrons enter

the dot successively, with opposite spins, leading to a
certain degree of bunching. Here the anomaly is due to
a kind of ‘‘population inversion’’(the most energetical
state is favored), manifesting a strong departure from
equilibrium (Fig. 3). Yet, the effect is rather weak, less
than 10%, contrary to the NS junctions where attractive
correlations are 100%.

Let us now consider how the above results are modified
by spin relaxation due, for instance, to spin-orbit scatter-
ing. Let us simply focus on the SET with two charge states
0, 1, and introduce a spin-flip rate T�1

1 � "sf . The master
equations will be written in this case

_pp0 � �2�L p0 � �R �p" � p#�;

_pp" � ��R p" � �L p0 �
1

2
"sf �p# � p"�;

_pp# � ��R p# � �L p0 �
1

2
"sf �p" � p#�:

(4)

The introduction of spin relaxation obviously changes
neither the average curent nor the charge shot noise. On
the contrary, the spin shot noise is altered. For in-
stance, opposite spin noise correlations between junctions
L and R become S���LR � �ehIif�2�L�R=�2�L � �R�

2 �
�"sf=2��R � "sf�g, and can even become positive. This
results in a spin noise

SspLL � 2ehIi; SspLR � 2ehIi
�R

�R � "sf
: (5)

The reduction of the spin noise SspLR from the ‘‘Poisson’’
value is a fingerprint of spin relaxation. Remarkably
enough, the spin noise on junction L is not affected, since
FIG. 3. Same as Fig. 2, �R � 0:2�L: bunching of opposite
spins for x > xc. The inset shows the probabilities of states
N � 0; 1; 2 and the population inversion at large x.

106601-3



µµµµ
L µµµµ

R

I ILσσσσ Rσσσσ

FIG. 4. Schematic setup for spin-current measurement, using
four spin-polarized terminals (see text).
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the spins of entering wave packets are uncorrelated what-
ever happens in the island. While transient current mea-
surements have allowed us to measure T1 in the presence
of Zeeman splitting [25], our result suggests an alterna-
tive method which does not require a magnetic field.
Notice that noise was recently proposed to test spin flip
in multiterminal geometries [26].

Let us now propose a setup for the measurement of
spin-current correlations in a single-electron transistor.
One may consider a four-terminal configuration [26],
where the two left terminals L1, L2 are ferromagnetic
metals with opposite spin polarizations, having the same
chemical potential �L (Fig. 4). Similarly, terminals R1
and R2 have opposite polarizations, respectively, parallel
to those of L1, L2, and the same chemical potential�R. If
the junction parameters are the same for L1, L2 on one
hand, and for R1 and R2 on the other hand, then the net
current flowing through the SET is not spin polarized. Yet,
it is possible to measure separately the spin-current com-
ponents in each of the four terminals, e.g., measure the
noise correlations SL1L1, SL1L2, SL1R1, SL1R2, etc. If each
terminal generates a fully spin-polarized current, the
analysis of this setup can be mapped onto the above
model, and the previous results hold. In the more realistic
case where polarization is not perfect, the above mea-
surement would yield a mixing of the spin noise with the
charge noise. If those are sufficiently different (strong
repulsive correlations), they could still be distinguished,
which allows us to probe the Coulomb correlations by the
method of spin-current noise.

In summary, we have proposed to probe the attractive
or repulsive correlations induced by interactions by mea-
suring the noise correlations of the spin components of
the current. This requires not to break the spin symmetry
in the device, e.g., the total current is not spin polarized.
We have illustrated this trend on two simple and classical
mesoscopic devices. First, a NS junction shows opposite
spin bunching due to attractive correlations. Second, a
SET in the sequential regime shows in general repulsive
correlations (antibunching), but those can be weakly
attractive far from equilibrium. Extensions to other re-
gimes or multiple dot systems is quite promising.

The authors are grateful to Th. Martin for fruitful
discussions concerning the ‘‘partition noise’’ analogy.
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[6] Ya. M. Blanter and M. Büttiker, Phys. Rev. B 59, 10 217

(1999).
[7] E. V. Sukhorukov, G. Burkard, and D. Loss, Phys. Rev. B

63, 125315 (2001).
[8] D. A. Bagrets and Yu.V. Nazarov, Phys. Rev. B 67, 085316

(2003).
[9] Baigeng Wang, Jian Wang, and Hong Guo, cond-mat/

0305066.
[10] B. R. Bulka, J. Martinek, G. Michalek, and J. Barnas,

Phys. Rev. B 60, 12 246 (1999).
[11] D. Loss and E.V. Sukhorukov, Phys. Rev. Lett. 84, 1035

(2000); G. Burkard, D. Loss, and E.V. Sukhorukov, Phys.
Rev. B 61, R16 303 (2000); J. C. Egues, G. Burkard, and
D. Loss, Phys. Rev. Lett. 89, 176401 (2002).

[12] G. B. Lesovik, T. Martin, and G. Blatter, Eur. Phys. J. B
24, 287 (2001); N. Chtchelkatchev, G. Blatter, G. B. Leso-
vik, and Th. Martin, Phys. Rev. B 66, 161320 (2002).

[13] F. Taddei and R. Fazio, Phys. Rev. B 65, 075317 (2002).
[14] C. Bena, S. Vishveshwara, L. Balents, and M. P. A. Fisher,

Phys. Rev. Lett. 89, 037901 (2002).
[15] O. Sauret, D. Feinberg, and Th. Martin, Eur. Phys. J. B

32, 545 (2003); Phys. Rev. B 69, 035332 (2004).
[16] M. J. M. de Jong and C.W. J. Beenakker, Phys. Rev. B 49,

16 070 (1994).
[17] Th. Martin, Phys. Lett. A 220, 137 (1996).
[18] F. Taddei and R. Fazio, Phys. Rev. B 65, 134522 (2002).
[19] L. I. Glazman and K. A. Matveev, Pis’ma Zh. Éksp. Teor.
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