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Energy Thresholds for Discrete Breathers
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Discrete breathers are time-periodic, spatially localized solutions of the equations of motion for a
system of classical degrees of freedom interacting on a lattice. An important issue, not only from a
theoretical point of view but also for their experimental detection, is their energy properties. We
considerably enlarge the scenario of possible energy properties presented by Flach, Kladko, and
MacKay [Phys. Rev. Lett. 78, 1207 (1997)]. Breather energies have a positive lower bound if the lattice
dimension is greater than or equal to a certain critical value dc. We show that dc can generically be
greater than 2 for a large class of Hamiltonian systems. Furthermore, examples are provided for
systems where discrete breathers exist but do not emerge from the bifurcation of a band edge plane wave.
Some of these systems support breathers of arbitrarily low energy in any spatial dimension.
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ment of these papers on energy thresholds can be sum-
marized as follows: for a certain class of Hamiltonian

Zd, and a state xi 2 Rf is assigned to each lattice site,
where f is the number of components and is to be finite.
The phenomenon of localization is of interest in almost
any branch of physics. In addition to the well-known
Anderson localization due to disorder, the last decade
has seen an increasing attention for localization phenom-
ena in translational invariant systems, i.e., in the absence
of disorder. Discrete breathers are time-periodic, spatially
localized solutions of the equations of motion for a sys-
tem of classical degrees of freedom interacting on a
lattice. A necessary condition for their existence is the
nonlinearity of the equations of motion of the system, and
the existence of discrete breathers has been proved rigor-
ously for some classes of systems [1–3]. In contrast to
their analogs in continuous systems, the existence of
discrete breathers is a generic phenomenon, which ac-
counts for considerable interest in these objects from a
physical point of view. In fact, recent experiments could
demonstrate the existence of discrete breathers in various
systems such as coupled optical waveguides [4], low-
dimensional crystals [5], antiferromagnetic materials
[6], Josephson junction arrays ([7] and references therein),
and molecular crystals [8].

Properties of discrete breathers, as well as of some
generalizations of discrete breathers, have been studied
in detail in a large variety of different models. However,
apart from existence proofs and studies of the spatial
localization of discrete breathers (which is typically ex-
ponential), only a few general results exist. Among these
it is worth mentioning the remarkable result by Flach,
Kladko, and MacKay [9] on energy thresholds for discrete
breathers in one-, two-, and three-dimensional lattices
(and subsequent generalizations to systems with long
range interactions [10] and to partially isochronous po-
tentials [11]). These results on energy thresholds have
practical relevance, as they can assist in choosing a proper
energy range for the detection of discrete breathers in real
experiments or computer experiments. The main achieve-
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systems of infinite size, a critical spatial dimension dc
exists, such that

(i) for a system whose spatial dimension d is smaller
than dc, no positive lower bound on the energy of discrete
breathers exist, i.e., discrete breathers of arbitrarily low
energy can be found, and

(ii) for a system where d � dc, there exists a positive
lower bound on the energy of discrete breathers.

The critical dimension dc depends on the type of
nonlinearity present in the system and is, according to
[9], typically 2, but never greater than 2. This result was
obtained by tacitly assuming that the Hamiltonian ad-
mits a Taylor series expansion around its equilibrium
point. Although this is a reasonable assumption for
many systems or models in physics, there exist some
remarkable exceptions (see, e.g., [12,13]). In the present
Letter, some assumptions made in [9] are critically revis-
ited and a larger class of Hamiltonian systems, not nec-
essarily expandable around the equilibrium point, is
considered. We find a much richer scenario for the exis-
tence of energy thresholds for discrete breathers such as
the following:

(1) The critical dimension dc can be greater than 2 for
large classes of Hamiltonian systems. We report on sys-
tems which do not show an energy threshold for discrete
breathers in spatial dimensions two and three.

(2) There exist discrete breathers which do not emerge
from a tangent bifurcation of the band edge plane wave.
For these discrete breathers an energy threshold exists
which, however, cannot be obtained by the analysis used
in [9–11,14].

(3) In the absence of a linear spectrum (‘‘sonic vac-
uum’’), discrete breathers are superexponentially local-
ized and dc � 1.

We consider a d-dimensional hypercubic lattice with N
sites. Each site is labeled by a d-dimensional vector i 2
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P H Y S I C A L R E V I E W L E T T E R S week ending
12 MARCH 2004VOLUME 92, NUMBER 10
The Hamiltonian of the system is of the general form

H �fxig� �
X
i2Zd

	H loc�xi� 
H int�xi; fxi
jg��; (1)

where H int describes the interaction of a state at site i
with the states fxi
jg in a (finite) neighborhood. H is
assumed to have an equilibrium point at xi � 0, with
H �f0g� � 0. In order to exemplify, in what follows we
shall make reference to the form

H �fpi; qig� �
X
i2Zd

�
p2
i

2

 V�qi� 


X
j2Ni

W�qi; qj�
�
; (2)

where V is a local potential, W an interaction potential,
and Ni denotes the set of nearest neighboring sites of i. V
and W are assumed to be 2 times continuously differ-
entiable (C2) and are allowed to have an isolated non-
analyticity at zero, being of the shape

V�q� � V2q2 

X1
n�3

V�
n qn; (3)

where the Vn are constants which may be different for
q � 0 (V


n ) and q < 0 (V
n ) (analogous for W).

For generic Hamiltonian systems, periodic orbits —
and hence also discrete breathers — occur in one-
parameter families, and some typical choices of
quantities to index such a family are the energy E, the
amplitude measured at the site with maximum ampli-
tude, or the breather frequency !b. It may or may not be
the case that, in a certain system, discrete breathers with
arbitrarily small amplitude can be found. (This is in
contrast to [9], where it is argued that the breather am-
plitude can always be lowered to arbitrarily small values.)

Systems with small amplitude breathers and
phonons.—First, it is important to recall that, for discrete
breathers to exist as generic solutions, the discrete
breather frequency !b has to be nonresonant with the
phonon spectrum !q, i.e., !q=!b =2 N [15]. Therefore, in
the limit of small amplitudes, the discrete breather fre-
quency !b has to approach an edge of the phonon spec-
trum from outside the phonon spectrum [9]. With
amplitudes tending to zero, it is observed that localized
solutions (discrete breathers) and extended ones (pho-
nons) become more and more similar, and one might
suspect that discrete breathers appear through a bifurca-
tion from a phonon mode. This will be taken as the
central assumption underlying the derivation of the fol-
lowing result. For some one-dimensional systems this
bifurcation scenario has been proved [3]; in other cases
numerics supports the conjecture. Calculating the critical
energy Ec at which this bifurcation occurs, the minimal
energy of discrete breathers in a system can be obtained.
Flach [14] computed the critical energy for systems where
the potentials V and W are infinitely many times differ-
entiable (C1) around their minima. Extending this type
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of analysis to systems with a Hamiltonian of the form (2),
which is C2 in the vicinity of its equilibrium point, one
obtains [16]

Ec / N14=d (4)

relating the bifurcation energy Ec to the number of lattice
sites N. Note that, as C1 is a subspace of C2, also the
result by Flach, Kladko, and MacKay (Ec / N12=d) can
occur, however, as a nongeneric case (not robust under C2

perturbations of the Hamiltonian). Additionally to the
above mentioned physical applications of nonanalytic
potentials, the fact that the generic behavior is somewhat
ruled by these potentials renders our result interesting
from a theoretical point of view.

Considering the proportionality (4) in the limit of an
infinite number of lattice sites,

lim
N!1

Ec

�
� 0; if d < 4;
> 0; if d � 4;

(5)

different energy properties are obtained, depending on
the spatial dimension d of the system. For d < 4, discrete
breathers of arbitrarily small energies can be found. For
d � 4, however, breather energies do not approach zero
even if the oscillation amplitude goes to zero, and below a
certain positive energy threshold no breathers exist. The
value of the threshold energy can be obtained from the
perturbation theory following the ideas of [14]. So, ex-
tending the result of Flach, Kladko, and MacKay [9], for
this larger class of Hamiltonian systems we obtain a
critical dimension dc � 4, instead of dc � 2, below
which generically there is no positive lower bound on
the discrete breather energy.

The mechanism which leads to the existence or non-
existence of an energy threshold can be understood some-
what intuitively in the following way: when lowering the
amplitude of a discrete breather towards zero, two differ-
ent mechanisms, competing with respect to their effect
on the breather energy, take place: the localization
strength of the discrete breather tends to become weaker,
leading to an increase in energy, while the mere lowering
in amplitude causes a decrease in energy [see Fig. 1(a) for
an example]. Depending on the respective strengths of
these effects (which in turn depend on the spatial dimen-
sionality of the system), an energy threshold may or may
not exist.

To confirm the above result, numerical data are pre-
sented for systems in two spatial dimensions, the first one
showing an energy threshold, the second one supporting
breathers of arbitrarily low energy. We consider a Fermi-
Pasta-Ulam system in two spatial dimensions with inter-
action potentials of the form 1

2 x
2 
 1

n jxj
n and n � 3; 4.

The equations of motion of this Hamiltonian system read

xx i �
X
j2Ni

�xj  xi�	1
 jxj  xijn2�: (6)

For n � 4, the interaction potential, and hence the
104301-2
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FIG. 2. Breather energy versus amplitude for two-dimen-
sional Fermi-Pasta-Ulam systems with periodic boundary con-
ditions, governed by Eq. (6), for the cases n � 3 and n � 4. A
lower bound on the breather energy is observed. For n � 3, with
increasing system size N this bound converges towards zero,
whereas for n � 4 it converges towards a nonzero value.
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FIG. 1. Shape profiles (absolute value of the amplitude) of
discrete breathers, centered at site 0, in Fermi-Pasta-Ulam
chains. (a) For a system with phonon spectrum the localization
is exponential and decreases when lowering the maximum
breather amplitude, while (b), for a system without phonon
spectrum, the localization strength is superexponential and
remains unchanged. Note the different scales of the ordinates
f ln��� and  ln	 ln����g. Lines are merely drawn to guide
the eye.
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FIG. 3. Energy versus amplitude for discrete breathers in a
system without phonon spectrum [Eq. (7)]. Independently of
the spatial dimension d � 1, 2, 3, 4 (from top to bottom),
arbitrarily low breather energies are observed. The data were
obtained for systems consisting of N � 8d lattice sites, but, due
to the strong (superexponential) localization, are indistinguish-
able on this scale from those of larger systems.
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Hamiltonian H , is C1 and we expect the critical dimen-
sion to be 2, whereas, for n � 3, we have H 2 C2 n C3,
and a critical dimension dc � 4 is expected. By numeri-
cal continuation of periodic orbits from an anticontinuum
limit [17], discrete breathers on finite lattices can be
computed numerically up to machine precision. Doing
so for a set of frequencies approaching the phonon band
edge, the dependence of the breather energy on its am-
plitude, measured at the site of maximum amplitude, is
obtained. The result is plotted in Fig. 2. For any finite
number of lattice sites, a lower bound on the breather
energy is observed. For n � 3, with increasing system
size N this bound converges towards zero, whereas for
n � 4 it converges towards a nonzero value, thus con-
firming the theoretical predictions.

Systems without a phonon spectrum.—A nongeneric,
but still remarkable, exception from the above reported
energy properties of discrete breathers is observed in
systems where no quadratic term is present in the inter-
action potential. Granular materials provide systems
where such interactions are realized and experimentally
accessible (see [13] for a review). In such systems, dis-
crete breathers have been shown to be superexponentially
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localized [15,18,19], where an upper bound on the
breather amplitude is given by the inequality jxij �
a exp�jij=b�c�d

i=3� [19], for some a, b, c, d 2 R, in one-
dimensional systems. (The breathers are supposed to be
centered at site i � 0.) However, the arguments by which
these results for the spatial decay are obtained should be
equally valid in higher spatial dimension, and numerical
104301-3
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FIG. 4. Breather amplitude versus frequency for system (8)
with N � 99 lattice sites, free boundary conditions, and fre-
quencies close to the phonon band edge (which is at frequency
2.0). With parameter value jaj � 0:4< 1

2

���
3

p
, breathers of ar-

bitrarily low amplitude are observed, whereas for 1
2

���
3

p
<

jaj � 1:2<
���
3

p
the breather amplitude, and hence the breather

energy, does not go to zero when approaching the phonon
band edge.
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computations confirm this reasoning. For these sort of
systems, the above analysis is not applicable, as discrete
breathers do not emerge from the bifurcation of a band
edge plane wave. Because of this, and in contrast to the
results for systems with phonons reported above, no
broadening of the discrete breather takes place when
lowering its amplitude [Fig. 1(b)]. It is this constant
localization strength — not the superexponential local-
ization — which allows for the existence of breathers of
arbitrarily low energy regardless of the spatial dimension
of the system.

This is confirmed numerically for a Hamiltonian sys-
tem with a harmonic on-site potential and an interaction
potential of the form jxj3. The equations of motion of this
system read

xx i � xi 

X
j2Ni

�xj  xi�jxj  xij: (7)

In Fig. 3, for systems of spatial dimension d � 1, 2, 3, 4,
the breather energy is plotted versus its amplitude.
Independently of d, arbitrarily low breather energies are
observed already in small finite systems.

Systems without small amplitude breathers.—So far
we have considered systems in which the amplitude of a
family of discrete breathers can be lowered to arbitrarily
small values, and formerly there has been uttered the
belief that this were always the case [9]. From a recent
existence proof for discrete breathers by Aubry,
Kopidakis, and Kadelburg [2] it follows, however, that
this is not true in general. In a Fermi-Pasta-Ulam chain
with equations of motion

xx i �
X

j�i�1

	�xj  xi� 
 a�xj  xi�
2 
 �xj  xi�

3� (8)
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and parameter values 1
2

���
3

p
< jaj<

���
3

p
, discrete breathers

do exist, but their maximum amplitudes lie always above
a certain positive lower bound, even when approaching
the phonon band edge (Fig. 4). This automatically implies
the existence of a threshold in energy.
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