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Nature of Light Scalar Mesons from their Large-Nc Behavior
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We show how to obtain information about the states of an effective field theory in terms of the
underlying fundamental theory. In particular, we analyze the spectroscopic nature of meson resonances
from the meson-meson scattering amplitudes of the QCD low energy effective theory, combined with
the expansion in the large number of colors. The vectors follow a �qqq behavior, whereas the �, �, and
f0�980� scalars disappear for large Nc, in support of a �qq �qq qq-like nature. The a0 shows a similar
pattern, but the uncertainties are large enough to accommodate both interpretations.
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TABLE I. Chiral parameters from ChPT and the unitarized
amplitudes (IAM) and their leading Nc scaling from QCD.

Parameter ChPT [3,4] IAM Large Nc

10�3 � � 770 MeV � � 770 MeV behavior

2L1 � L2 �0:55� 0:7 0:0� 0:1 O�1�
L2 1:35� 0:3 1:18� 0:10 O�Nc�
L3 �3:5� 1:1 �2:93� 0:14 O�Nc�
L4 �0:3� 0:5 0:2� 0:004 O�1�
L5 1:4� 0:5 1:8� 0:08 O�Nc�
L6 �0:2� 0:3 0:0� 0:5 O�1�
L7 �0:4� 0:2 �0:12� 0:16 O�1�
field theory calculations, by absorbing loop divergences
order by order in the chiral parameters. Once the set of

L8 0:9� 0:3 0:78� 0:7 O�Nc�
Effective quantum field theories are very useful to deal
systematically with the degrees of freedom of systems
when more fundamental theories are not available or
intractable. The paradigmatic example is QCD, which is
not able to describe hadron dynamics at low energies,
where it becomes nonperturbative. In particular, the ex-
istence and nature of the lightest scalar mesons is a long-
standing controversial issue that has recently received
relevant experimental and theoretical contributions.
Concerning their existence, the implementation of the
QCD spontaneously broken chiral symmetry leads to
poles in the pion and kaon scattering amplitudes, associ-
ated with the most controversial states: the � and the �
[1]. Such poles have been found in the most recent charm
meson decay experiments [2]. About their nature, most
chiral descriptions of meson dynamics do not include
quarks and gluons and are hard to relate to QCD, and
the spectroscopic nature is thus imposed from the start. In
contrast, models with quarks and gluons, even those in-
spired in QCD, have problems with chiral symmetry,
small meson masses, etc. Furthermore, both kinds of
models are usually incompatible with the chiral expan-
sion imposed by the low energy effective theory of QCD,
known as chiral perturbation theory (ChPT).

ChPT [3] is the most general derivative expansion of a
Lagrangian, respecting the QCD symmetries, containing
only �, K, and 
 mesons. These particles are the
Goldstone bosons of the spontaneous chiral symmetry
breaking of massless QCD and are the QCD low energy
degrees of freedom. For two-meson scattering ChPT is an
expansion in even powers of momenta, generically de-
noted as O�p2�; O�p4� . . . , over a scale �� � 4�f0 ’
1 GeV. Since u, d, and s quark masses are small com-
pared with ��, they are introduced as perturbations,
giving rise to �, K, and 
 masses, counted as O�p2�. At
each order in p2 ChPT is the sum of all terms compatible
with the symmetries, each multiplied by a ‘‘chiral’’ pa-
rameter, thus avoiding any bias in setting up a chiral
model of mesons. Thus, ChPT allows for finite quantum
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parameters up to a given order is determined from ex-
periment, it describes, to that order, any other process
involving mesons. At leading order there is only one
parameter, the pion decay constant in the chiral limit,
f0, that fixes ��, so that all underlying theories breaking
chiral symmetry at the same scale have the same leading
term. Different underlying dynamics manifest through
different chiral parameters at higher orders. We show in
Table I the Li parameters that determine meson-meson
scattering up to O�p4�. As usual after renormalization,
they depend on an arbitrary regularization scale �:

Li��2� � Li��1� �

i

16�2 log
�1

�2
; (1)

where 
i are constants given in [3]. Of course, in physical
observables the � dependence is canceled through the
regularization of the loop integrals.

The large Nc expansion [5] is the only analytic ap-
proximation to QCD in the whole energy region.
Remarkably, it provides a clear definition of �qqq states
that become bound states when Nc ! 1. ChPT being
the low energy QCD effective theory, the Nc scaling of
its Li parameters, listed in Table I, has been obtained in
[3,6]. In addition, the �;K; 
 masses scale as O�1� and f0
as O�

������
Nc

p
�. There is still the question of what is the

renormalization scale at which the Nc scaling should be
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FIG. 1. Modulus of amplitudes in different meson-meson
channels for Nc � 3 (thick line), Nc � 5 (thin continuous
line), and Nc � 10 (thin dotted line), scaled at � � 770 MeV.
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applied to the Li���. The scale dependence is certainly
suppressed by 1=Nc for Li � L2; L3; L5; L8, but not for
2L1 � L2, L4, L6, and L7. Even though the subleading
pieces will become proportionally less important at large
Nc, the logarithmic terms can be rather large for Nc � 3
[7]. The separation between the large Nc leading and
subleading parts of the measured Li is not possible, but
the leading Nc estimates work well around � ’ �� ’
1 GeV (as we check below with the vector mesons).
Indeed, the � where the Nc scaling applies has been
estimated between 0.5 and 1 GeV [3].

Since ChPT is an expansion in momenta and masses, it
is limited to low energies. As the energy grows, the ChPT
truncated series will violate unitarity. Nevertheless, in
recent years ChPT has been extended to higher energies
by means of unitarization [8–12]. The main idea is that
when projected into partial waves of definite angular
momentum J and isospin I, physical amplitudes t should
satisfy an elastic unitarity condition:

Imt � �jtj2 ) Im
1

t
� ��) t �

1

Ret�1 � i�
; (2)

where � is the phase space of the two mesons, a well-
known function. A ChPT calculation up to a given order
does not satisfy this constraint, since the powers of mo-
menta will not match in the left-hand equality. However,
from the right-hand side we note that to have a unitary
amplitude we need only Ret�1, and for that we can use
the ChPTexpansion; this is the inverse amplitude method
(IAM) [8]. The results of this simple resummation are
remarkable, since it generates resonances not initially
present in ChPT such as the �;K�, the �, and the �,
ensuring unitarity in the elastic region and respecting
the low energy ChPT expansion. When inelastic two-
meson processes are present all partial waves t between
all physically accessible states can be gathered in a sym-
metric T matrix. Then, the IAM generalizes to T ’
�ReT�1 � i���1, where � is a diagonal matrix containing
the phase spaces of all accessible two-meson states, again
well-known [9–12]. With this generalization it was re-
cently shown [11] that, using the one-loop ChPT calcu-
lations, it is possible to generate the four resonances
mentioned above together with the a0�980�, the f0�980�,
as well as the octet �, extending the ChPT description of
two body �, K, or 
 scattering up to 1.2 GeV, but keeping
simultaneously the correct low energy expansion and
with chiral parameters compatible with standard ChPT.
We show in Table I the Li obtained from a recent update
of an IAM fit to the scattering data [11].

One may wonder how robust are these results. Similar
unitarization methods [12,13] lead to similar results. In
particular, the � and � are obtained as soon as one
requires chiral symmetry and unitarity. The use of
ChPT ensures that we are not forgetting any contribution
up toO�p4�, and that we could extend it to higher orders if
we wished. Indeed, the IAM has been applied to �� up to
O�p6� finding basically the same results [14]. Also, with
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an order of magnitude estimate for the leading O�p8�
contribution it is even possible to go up to 1400 MeV in
the J � 2 channel, generating the f2�1250� [15]. One
could worry about crossing symmetry, but it has been
shown that the amount of crossing violation is smaller
than the present experimental uncertainties [14].
Furthermore, using the Roy equation formalism for ��,
which respects also crossing symmetry, a similar pole for
the � has been recently found [16]. Unlike the IAM, all
these improvements in �� have not been applied to other
processes because they become much more complicated.

Since we are interested in the specific underlying QCD
dynamics, we have to consider at least O�p4� terms. It is
possible to describe the scalar channels with the leading
order plus a cutoff (or another regularization parameter)
playing the role of some combination of higher order
parameters. However, for the vector resonances we need
at least theO�p4� parameters, and we want to generate the
vectors to test that our approach is able to identify first of
all the well established �qqq states, and the scale � where
the Nc scaling applies. For those reasons, we use the one-
loop O�p4� meson-meson scattering amplitudes unita-
rized with the IAM [11]. Different IAM fits are due to
different ChPT truncation schemes equivalent up to
O�p4� and to the estimates of the large systematic un-
certainties in the data; we have chosen a representative fit
in Table I, but the results are similar for other sets. Note
that these ChPT amplitudes are fully renormalized in the
MS� 1 scheme and are,therefore, scale independent.
Hence all the QCD Nc dependence appears correctly
through the Li and cannot hide in any spurious parameter.
If we had kept just the leading order and a regularization
scale or a cutoff, we would not know if that cutoff is
playing the role of, for instance, L2 or L8, or any other
O�Nc� combination of Li.

Let us then scale f0 ! f0
�����������
Nc=3

p
for m � �;K; 
, and

Li��� ! Li����Nc=3� for i � 2; 3; 5; 8, keeping the
masses and 2L1 � L2, L4, L6, and L7 constant. Figure 1
shows, for increasing Nc, the modulus of the �I; J� �
�1; 1� and �1=2; 1� amplitudes. We see the Breit-Wigner
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FIG. 2. Nc dependence of the �, K�, �, and � pole positions,
defined as ���������spole

p
’ M� i
=2 normalized to their Nc � 3

value. The dashed lines show different Nc scaling laws, and
the gray areas cover the uncertainty in � ’ 0:5–1 GeV.
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FIG. 3. Representative diagrams contributing to meson-
meson scattering and their Nc scaling.

FIG. 4. Top: modulus of �I; J� � �0; 0�; �1; 0� amplitudes for
Nc � 3 (thick line), Nc � 5 (thin continuous line), Nc � 10
(dashed line), and Nc � 25 (thin dotted line), scaled at � �
770 MeV. Bottom: imaginary part and modulus of amplitudes
versus Nc in the resonant regions. Dark gray areas cover � �
0:55–1 GeV; the light gray area covers the uncertainty down
to 0.5 GeV.
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shape of the � and K��892� vector resonances, respec-
tively, becoming narrower as Nc increases, but with a
peak at an almost constant position. In contrast all over
both the � and � regions the amplitudes decrease with
larger Nc.

In Fig. 2 we show the evolution of the � and K� pole
positions, related to the mass and the width as ���������spole

p
’

M� i
=2 (as for Breit-Wigner resonances, but abusing
the notation for the rest). We have normalized bothM and

 to their value at Nc � 3 in order to compare with the �qqq
expected behavior: MNc=M3 constant and 
Nc=
3 �
3=Nc. The agreement is remarkable, not only qualita-
tively, but also quantitatively within the gray band that
covers the uncertainty on the scale � � 0:5–1 GeV
where to apply the large Nc scaling. We have checked
that outside that band, the behavior starts deviating from
that of �qqq states, which confirms that the expected scale
range where the large Nc scaling applies is correct. In
contrast, the � and � poles show a totally different
behavior, since their width grows with Nc, in conflict
with a �qqq interpretation. This was also suggested using
the ChPT leading order unitarized amplitudes with a
regularization scale [12,17].

In order to determine what these states could be, we
have checked that in the whole � and � regions, the
corresponding Imt�O�1=N2

c� and Ret�O�1=Nc�.
Diagrammatically, imaginary parts can be generated
only from graphs like those in Figs. 3(a) and 3(c), when
the intermediate state (represented by the dotted line) is
physically accessible. But Fig. 3(a) has an intermediate �qqq
meson, with mass M�O�1� and 
� 1=Nc, so that at���
s

p
’ M we expect Imt�O�1� and a peak, as it is indeed

the case of the � andK�. Therefore, the� and � do not get
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imaginary parts from graphs like that of Fig. 3(a),
although they get a 1=Nc contribution to the real part
from Fig. 3(b), usually interpreted as � or K� t-channel
exchange, respectively. The leading s-channel contribu-
tion in terms of quarks and gluons comes from the graph
in Fig. 3(c). For the �, which is a strange particle, this
means a leading �qq �qq qq (or two-meson) contribution. This
kind of state is predicted to unbound and become the
meson-meson continuum in the Nc ! 1 limit [18]. The
same interpretation holds for the sigma, but Fig. 3(c) also
corresponds to a glueball exchange, which we cannot
exclude with these Nc arguments alone. However, the
lightest glueball is expected with a mass higher than
1 GeV and SU(3) symmetry would suggest that the �
and the � should be rather similar. Thus, a dominant
�qq �qq qq component for the � seems the most natural inter-
pretation, although it can certainly have some glueball
mixing.

Finally, Fig. 4 shows the large Nc behavior in the
f0�980� and a0�980� regions, which are more complicated
due to the distortions caused by the nearby �KKK threshold.
The f0�980� is characterized by a sharp dip in the ampli-
tude that vanishes at large Nc, contrary to the expecta-
tions for a �qqq state. Note that for smaller Nc, the position
of the disappearing dip changes, but for Nc > 5 it follows
again the 1=N2

c scaling compatible with �qq �qq qq states or
102001-3



FIG. 5. Modulus of �I; J� � �1; 0� amplitude for Nc � 3
(thick line), Nc � 5 (thin continuous line), Nc � 10 (dashed
line), and Nc � 25 (thin dotted line), scaled at � � 500 MeV.
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glueballs. The a0�980� behavior is more complicated.
When we apply the Li��� large Nc scaling at � �
0:55–1 GeV, its peak disappears, suggesting that this is
not a �qqq state, and the imaginary part of the amplitude
follows roughly the 1=N2

c behavior in the whole region.
However, as shown in Fig. 5, the peak does not vanish at
large Nc if we take � � 0:5 GeV . Thus we cannot rule
out a possible �qqq nature, or a sizable mixing, although it
shows up in an extreme corner of our uncertainty band.
For other recent large Nc arguments in a chiral context,
see [19].

In conclusion, we have shown how by changing effec-
tive Lagrangian parameters according to some specific
rules dictated by the underlying dynamics, we can learn
about the structure of the states at the fundamental level.
In particular, we have shown that the QCD large Nc
scaling of the unitarized meson-meson amplitudes of
chiral perturbation theory is in conflict with a �qqq nature
for the lightest scalars [not so conclusively for the
a0�980�], and strongly suggests a �qq �qq qq or two-meson
main component, maybe with some mixing with glue-
balls, when possible.

The techniques here presented could be easily ap-
plied in other frameworks where unitarized effective
Lagrangian amplitudes already exist, as heavy baryon
chiral perturbation theory [20] or the strongly interacting
symmetry breaking sector of the standard model [21].
With somewhat more effort they could also be applied
when the fundamental theory is intractable but has a
simpler description in terms of effective Lagrangians.

Note added.—The idea of this work and the pole move-
ments were presented by the author in two workshops
[22]. While completing the calculations and the manu-
script the results without the scale uncertainties have been
confirmed [23] for all resonances, using the approximated
IAM [9].
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