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Maximizing the Hilbert Space for a Finite Number of Distinguishable Quantum States
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Given a particular quantum computing architecture, how might one optimize its resources to
maximize its computing power? We consider quantum computers with a number of distinguishable
quantum states, and entangled particles shared between those states. Hilbert-space dimensionality is
linked to nonclassicality and, hence, quantum computing power. We find that qutrit-based quantum
computers optimize the Hilbert-space dimensionality and so are expected to be more powerful than
other qudit implementations. In going beyond qudits, we identify structures with much higher Hilbert-

space dimensionalities.
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Quantum computation [1] has, in a remarkably short
time, become one of the most interesting fields in applied
quantum physics today. There are numerous suggestions
for implementing quantum computers. To construct a
practical quantum computer (QC) with any implementa-
tion is clearly a highly demanding task. It is therefore
essential that, for a given physical architecture, one opti-
mize the available resources to give the most powerful
computer possible. The Hilbert-space dimension of a QC
has been identified as its primary resource [2]. In this
Letter, we direct attention to the important issue of
maximizing the Hilbert-space dimension for a given
QC architecture.

Most of the QC literature focuses on qubits (quantum
bits) as the fundamental quantum elements of computing.
There is a certain attraction in working with qubits: They
are the simplest systems in which to observe quantum
effects; we have much experience manipulating two-state
systems, and some classical concepts based on bits map
well to qubits. However, a QC is not limited to qubits, and
we will show that more general structures can maximize
the Hilbert-space dimension.

One common feature of all scalable quantum com-
puters is their use of entangled particles [2]. If we con-
sider a QC comprising a fixed number of entangled
particles, obviously the total Hilbert-space dimensional-
ity will be increased by increasing the internal degrees of
freedom (e.g., spin) of each particle. However, one cannot
usually change the dimensionality of the particle state
space; nor would the added complexity involved be nec-
essarily favorable. On the other hand, there are many QC
architectures, involving quantum particles having access
to a finite number of distinguishable quantum states.
Examples include charge-qubit schemes [3,4], supercon-
ducting Cooper-pair boxes [5], quantum computing based
on photons in interferometers joined by lossless nonlinear
optical elements [6], and the linear optics implementation
[7]. All these proposals have an architecture (e.g., a
quantum dot array) which defines the quantum states
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with the particles in some subset of those states. In this
work, we consider what grouping of particles and states
used for quantum information processing maximizes the
total Hilbert-space dimensionality. We term these groups
quantum elements.

Qudits (quantum digits) [8] are quantum elements that
generalize qubits. In a qudit, the number of states is
allowed to be any integer greater than unity. The qubit
is therefore the two-state qudit, and the qutrit is the three-
state qudit. Investigations into qudits have shown many
significant results. Entanglement between two qutrits was
first discussed by Caves and Milburn [9]. Bell inequalities
for systems of qudits are more strongly violated than
analogous systems of qubits [10], and recent experiments
have shown entanglement of two photonic qutrits, real-
ized using the orbital angular momentum as the quantum
state [11]. A quantum-communication protocol using qu-
trits has also been proposed [12]. Universal quantum gates
and gate fidelity have been studied for qudit systems [13],
a readout method based on quantum state tomography
has been proposed [14], and the extension of infinite-
dimensional qudits to continuous-variable quantum com-
putation has also been made [15].

The simplest architecture one can consider is a qudit
based QC, i.e., systems with one particle per quantum
element. We refer to the x-state qudit as an x qudit. We also
consider a more general case, with a total of N quantum
sites, x sites per quantum element, each quantum element
having k particles, and no more than [ particles at each
site. We call these quantum elements (k, [) packing
x qudits and use the shorthand notation Q,(k,[) to de-
scribe them. As we are concerned here with dimen-
sionalities, we denote the dimensionality of a Q.(k, /)
quantum element by d,(k,[). To illustrate our nota-
tion, x qudits would be written Q.(1, 1); Blume-Kohout
et al. [2] described the dimensionality of fermionic and
bosonic systems, which in our notation would be Q,(k, 1)
and Q.(k, k), respectively; Creffield et al performed
analysis of two electrons in a polygonal dot [16], which
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corresponds to Q,(2, 1); Creffield and Platero considered
two electrons in a square dot with the possibility of
double occupancy [17] [Q4(2,2)], and without double
occupancy this system has been proposed as a scalable
quantum element by Jefferson et al [18] [Q4(2, 1)].

In view of the above generalizations, it is useful to
consider whether there might be some quantum algo-
rithms which might be more appropriately solved on
such a machine. Although we are not able to adequately
address this question, we do note that Abrams and Lloyd
[19] discovered an efficient quantum algorithm for simu-
lation of many-body Fermi systems. It is therefore sen-
sible to propose the reverse of this method, namely, that
these more general structures are able to efficiently per-
form quantum algorithms; this thesis is in keeping with
Bravyi and Kitaev’s work on fermionic quantum compu-
tation [20].

Despite the general nature of our concepts, it is useful
to keep a concrete QC proposal in mind when considering
these schemes. We concentrate on a charge scheme related
to that of Hollenberg et al [4]. In this scheme, a finite
number of ionized donors (our quantum sites) is intro-
duced into a solid matrix (phosphorus in silicon), with
top gates to control the barrier potentials, and, hence,
tunneling rates, between the sites, and the relative energy
levels on each site. We extend the original proposal (which
was for charge qubits only) to include qudits and packing
structures. A more detailed study of a charge qudit QC
appears in Ref. [21].

Our model for understanding Hilbert-space optimiza-
tion is a linear array of N donor impurities, with control-
lable tunneling probabilities and individual energy levels.
If we partition the space into x qudits [Q,(1, 1)], shown in
Fig. 1 for x = 2,3,4,6,12 and N = 12, then we have N/x
quantum elements, and the dimension of the Hilbert
space obtained by maximally entangling these N/x elec-
trons is

[d (1, V¥ = XN/, (1)

By differentiating Eq. (1), we immediately see that the
total dimensionality is maximized for x = e. As the
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FIG. 1. Possible groupings of a linear array of 12 distin-
guishable quantum sites into various quantum qudit partitions.
Qudit groupings are shown schematically as dashed ovals, and
open circles are quantum sites. (a) Partitioning into six qubits,
(b) partitioning into four qutrits, (c) partitioning into three
4-qudits, (d) partitioning into two 6-qudits, (e) partitioning
into one 12-qudit.
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number of quantum sites per particle must be an integer,
we note that for identical qudits the dimensionality is
optimized for qutrits. The Hilbert-space dimensionality
for qutrits over qubits will be larger by a factor D5/ D, =
exp[N(In3/3 — In2/2)]. This simple result carries an im-
portant message about the merits of nonqubit QCs, and
adds further motivation to experimental drives to realize
qudits.

In Fig. 2, we show the Hilbert-space dimensionality of
a twelve-state system as a function of the size of each
quantum element. Each different case is explained below.
The + symbols in Fig. 2 show the dimensionality asso-
ciated with qudit arrangements. As expected, the dimen-
sionality is maximized by a qudit size of 3 (we show only
integer qudit sizes). For the system with 12 quantum
states, [d,(1, 1)]° = 64, whereas [d5(1, 1)]* = 81.

Conceivably, it may be possible to realize a quantum
computer using a mixture of qubits and qutrits, as was
recently discussed by Daboul et al [22], to optimize the
total dimensionality of the Hilbert space. Suppose we par-
tition the space into y, qubits and y; qutrits such that
2y, + 3y; = N/, where N’ < N. One might guess that the
dimensionality of the Hilbert space would be increased by
mixing qubits and qutrits such that the average dimen-
sionality of the system (2y, + 3y3)/(y, + y3) is closer to
the optimal value e. However, this is not the case. The di-
mensionality of the Hilbert space of a system partitioned
as suggested is given by D =2%23% =2(N'"3y)/23y;
d,(1,1) = exp(N'/e), which leads to D/d,(1,1)=
exp(my; +b), where m = In(3) — %ln(2) >0 and
b= [@— e 'IN’. Note that exp(my;+b)=1 if y;=
—b/m=0.36N'. Since y; = N’/3 on physical grounds,
this implies my; + b <0; i.e., the exponential is always
less than one. Furthermore, since m > 0, the value of the
exponential increases with the number of qutrits y;. Thus,
the dimensionality of the Hilbert space is optimized by
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FIG. 2. Hilbert space dimensionality for various geometries
as a function of qudit size for N distinguishable quantum states.
+ corresponds to equipartitioning into qudits, O toa Q,(x/2, 1)
partition, X to a Q,(x, 2) partition, and * to spin referenced
systems. Note that the dimensionalities are defined only when
N/x is a positive integer, i.e., x = 2,3, 4,6, 12. The lines are
merely guides for the eye.
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partitioning the system into the largest available number
of qutrits, except where adding a single qubit would more
efficiently use all of the available quantum states.

We now consider the case where the number of par-
ticles per quantum element is allowed to vary, but there
can be no more than one particle per quantum state, i.e.,
the Q,(k, 1) partition, or fermionic system. To maximize
the total Hilbert-space dimensionality, the number of
particles per quantum element is given by x = 2k (x
even) or x = 2k + 1 (x odd). The total dimensionality
for a system with N sites, partitioned into N/x elements
is (for x even and N/x an integer)

[d(x/2, DV = <x’/62 )N/x,

where (") is the number of possible identifiably different
permutations of n elements of two different types, m of
which are of type 1 (e.g., particles) and n — m of which
are of type 2 (e.g., holes or empty sites). The Hilbert-
space dimensionality showing this form of partitioning is
represented by the open circles, O, in Fig. 2. The total
dimensionality, [d (x/2, D]¥/*, is clearly maximized
when x = N, which corresponds to all particles roaming
freely on the lattice. This is the case of local fermionic
modes discussed in Ref. [20], and is scalable, according to
Ref. [2]. In a 12-state configuration, for example, Fig. 3(e)
shows the configuration which maximizes the dimen-
sionality of the Hilbert space, with d,(6, 1) = 924, an
order of magnitude larger than for qutrits. Despite this
maximization, it is important to realize that there may be
advantages to partitioning into smaller subspaces (i.e.,
x < N). For example, it is not possible to do error correc-
tion without some redundant elements.

One natural extension is to allow the maximum num-
ber of particles per site to increase to two. This could
physically correspond to an electron-based QC, where the
charging energy of two electrons on one dot can be over-
come [17]. In this case, the dimensionality is
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FIG. 3. Possible groupings of a linear array of 12 distinguish-
able quantum sites into various Q,(k, 1) partitions. The x-qudit
groupings are shown schematically as dashed ovals, open
circles are quantum sites, and filled circles correspond to
(randomly chosen) filled sites. (a) Six Q,(1,1) partitions,
(b) four Qs;(1,1) partitions, (c) three Q4(2,1) partitions,
(d) two Q4(3, 1) partitions, and (e) one Q;,(6, 1) partition.
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where j, indexes the number of sites with two electrons
per site and is allowed to range from 0 to N /2 for x even,
or 0 to (N—1)/2 for x odd. One can show that the
dimensionality of each quantum element is maximized
when k = x; i.e., the number of particles per element is
equal to the number of sites per element. The dimension-
ality in this case is shown by the crosses, X, in Fig. 2,
which is significantly larger than the case where at most
one particle is allowed per site.

Another alternative is where we have an extra quantum
number (for example spin), which would double the num-
ber of accessible quantum states. In this case, the system
returns to the standard fermionic case [maximized by
0,.(x, 1)] and the total dimensionality becomes simply

[y (x, DIV = <2;c )N/x

This dimensionality is shown by the asterisks,* in Fig. 2
which represents the largest dimensionality of all the
cases under consideration.

If we generalize to [ particles per quantum state, the
general result for the Hilbert-space dimension of a single
quantum element is

r s+1 ]r)

d (k)= Y ]‘[(
U] s=1

where j, € {0, ..., [} denotes the number of sites with r
particles, and the sum is over all sets D’l - j;] of integers
that satisfy >/, rj, = kand Y!_, j, =

With no restriction on the number of particles per site,
we retrieve the bosonic case. We would then be extending
familiar bosonic QC schemes to the multiple-particle
limit, for example, linear optical [7], nonlinear optical
[6], or superconducting [5] QC schemes. The dimension-
ality is considerably simplified and is [2,23]

dy(k, k) = <x:fI 1).

This dimensionality can greatly exceed the fermionic
case, for the same number of accessible quantum states,
for a large enough number of particles. Furthermore, this
dimensionality monotonically increases with increasing
particle number. By judicious choice of architecture, it
may be easier to improve quantum computing power in a
bosonic QC after initial construction (i.e., to upgrade)
than for other architectures.

There is certainly far more to quantum computers than
optimizing the Hilbert-space dimension. Here we have
not entered into issues of operational complexity, which
will be specific to particular architectures, as well as
decoherence which is expected to differ substantially
between implementations. However, comparing qudit im-
plementations, a system comprising qubits alone will
maximize the amount of information that can be ob-
tained in a single measurement step. This is because an
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optimum measurement would be to measure the state of
every quantum particle. For qubits, that would yield N/2
values; for qutrits, it would yield only N/3 values. As a
rough measure, we may say that, to equalize the amount
of information gained about the state of the computer, we
would need to perform (N/2)/(N/3) = 1.5 times as many
measurements on a qutrit-based quantum computer as a
qubit-based quantum computer. The dimensionality of
the qutrit Hilbert space exceeds that of the qubit Hilbert
space by 1.5 when

1 In2
exp[N(nT?’ — %)} > 1.5,

Therefore when the number of quantum sites exceeds 20,
the increase in dimensionality of the Hilbert space should
compensate for the increased measurement complexity.

We have shown, using simple mathematical arguments,
that for a quantum computer with a finite number of
distinguishable states to be shared between a finite num-
ber of quantum particles arranged in qudits the Hilbert
space is maximized when the system is partitioned into
the largest possible number of qutrits. Given that the
construction of quantum computers is highly demanding,
this kind of optimization for a given geometry may make
the difference between a practical and impractical imple-
mentation of quantum computing. This is an added con-
straint over and above scalability. The Hilbert-space
dimensionality can be increased substantially by both
relaxing the requirement that the particles be partitioned
into qudits and by implementing what we have termed a
packing geometry where the particles are allowed to be
present in any site, up to some maximum, determined by
the physical properties of the quantum system.

A.D.G. acknowledges helpful discussions with
S. Bartlett of Maquarie University, and A. White of the
University of Queensland. S.G.S. acknowledges help-
ful discussions with D.K. L. Oi of the University of
Cambridge and E C. Langbein of the University of
Wales, and financial support from the CMI project on
Quantum Information. This work was supported by the
Australian Research Council, the Australian government,
and by the U.S. National Security Agency (NSA),
Advanced Research and Development Activity (ARDA),
and the Army Research Office (ARO) under Contract
No. DAADI19-01-1-0653.

= N > 2065 (2)

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

097901-4

(2]
(31

(4]
(51

(6]
[71
(8]

(91

[10]

[14]
[15]
[16]
[17]
(18]
(19]
(20]
(21]
(22]

(23]

R. Blume-Kohout, C. M. Caves, and 1. H. Deutsch, Found.
Phys. 32, 1641 (2002).

A. Ekert and R. Josza, Rev. Mod. Phys. 68, 733 (1996);
L. Fedichkin, M. Yanchenko, and K.A. Valiev,
Nanotechnology 11, 387 (2000); A.S. Dzurak et al,
cond-mat/0306265; R.G. Clark et al., Philos. Trans. R.
Soc. London, Ser. A 361, 1451 (2003).

L.C. L. Hollenberg et al., cond-mat/0306235 [Phys. Rev.
B (to be published)].

Yu. Makhlin, G. Schon, and A. Shnirman, Nature
(London) 398, 305 (1999); Y. Nakamura, Yu. A.
Pashkin, and J. S. Tsai, ibid. 398, 786 (1999).

L L. Chuang and Y. Yamamoto, Phys. Rev. A 52, 3489
(1995).

E. Knill, L. Laflamme, and G.J. Milburn, Nature
(London) 409, 46 (2001).

P. Rungta et al., in Directions in Quantum Optics edited
by H.J. Carmichael, R.J. Glauber, and M.O. Scully
(Springer-Verlag, Heidelberg, 2001), p. 149.

C.M. Caves and G.J. Milburn, Opt. Commun. 179, 439
(2000).

D. Kaszlikowski et al., Phys. Rev. Lett. 85, 4418 (2000);
T. Durt, D. Kaszlikowski, and M. Zukowski, Phys.
Rev. A 64, 024101 (2001); J.L. Chen et al., ibid 64,
052109 (2001); D. Collins et al, Phys. Rev. Lett. 88,
040404 (2002); D. Kaszlikowski et al., Phys. Rev. A 66,
032103 (2002).

A.Vaziri, G. Weihs, and A. Zeilinger, Phys. Rev. Lett. 89,
240401 (2002).

Caslav Brukner, Marek Zukowski, and A. Zeilinger,
Phys. Rev. Lett. 89, 197901 (2002).

M. A. Nielsen et al, Phys. Rev. A 66, 022317 (2002);
E. Bagan, M. Baig, and R. Mufioz-Tapia, Phys. Rev. A 67,
014303 (2003); K. Fujii, J. Opt. B 5, 6313 (2003); A.Yu.
Vlasov, quant-ph/0210049 vl; X. Wang, B.C. Sanders,
and D.W. Berry, Phys. Rev. A 67, 042323 (2003).

R.T. Thew, K. Nemoto, A.G. White, and W.J. Munro,
Phys. Rev. A 66, 012303 (2002).

B. C. Sanders, S.D. Bartlett, and H. de Guise, quant-ph/
0208008 v1.

C.E. Creffield, W. Héusler, J. H. Jefferson, and S. Sarkar,
Phys. Rev. B 59, 10719 (1999).

C.E. Creffield and G. Platero, Phys. Rev. B 66, 235303
(2002).

J. H. Jefferson, M. Fearn, D. L. J. Tipton, and T. P. Spiller,
Phys. Rev. A 66, 042328 (2002).

D.S. Abrams and S. Lloyd, Phys. Rev. Lett. 79, 2586
(1997).

S. B. Bravyi and A. Yu. Kitaev, Ann. Phys. (N.Y.) 298, 210
(2002).

S.G. Schirmer, A.D. Greentree, and D. K. L. Oi, quant-
ph/0305052.

J. Daboul, X. Wang, and B.C. Sanders, J. Phys. A 36,
2525 (2003).

J.E. Mayer and M.G. Mayer, Statistical Mechanics
(Wiley, New York, 1940).

097901-4



