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Radiation-Spin Interaction, Gilbert Damping, and Spin Torque
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Magnetization relaxation processes, which are represented by the Gilbert damping term and the spin
torque term in the Landau-Lifshitz-Gilbert (LLG) equation, are described by the radiation-spin
interaction (RSI), where the radiation field is produced by magnetization precessional motion itself.
It is shown that the LLG equation including the Gilbert damping term and the spin torque term is
derived from the spin Hamiltonian containing the RSI. The derivation of the LLG equation is given in a
self-consistent method. It is also shown that, according to RSI, the magnitude of the magnetization
vector deviates from the magnetization saturation with the order of O��2�, where � is the Gilbert
damping parameter.
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to be easy to change its magnetization direction. Then,
the magnetization of the soft film can be driven to oscil-

spin-pumping concept, which was used to describe the
enhancement of the Gilbert damping parameter by
With increasing interest in advanced magnetic infor-
mation storage and data process elements, a detailed
understanding of the micromagnetic structure in micro-
sized and nanosized magnets becomes more crucial. In
general, a physical description of micromagnetic phenom-
ena is based on the use of the Landau-Lifshitz-Gilbert
(LLG) equation [1], which is a phenomenological equa-
tion of motion for the magnetization, M,

dM
dt

� ��M�Heff � �M�
dM
dt

; (1)

where � is the gyromagnetic ratio and � is the Gilbert
damping parameter. The effective magnetic field Heff is
given by the energy variational with magnetization,
Heff � ��G=�M, where G is the free energy of the
system.

The second term in the LLG equation, the Gilbert
damping term [2], controls the magnetic relaxation pro-
cess and determines how fast the magnetization is re-
stored to its equilibrium position. Thus, a thorough
understanding of the Gilbert damping term is essential
for the research in magnetic memory devices employing
fast magnetization reversal processes. The magnetization
relaxation process has been described with various
quantum processes such as spin-orbit coupling and two-
magnon scattering [3].

Recently, Slonczewski [4] and Berger [5] have sug-
gested an interesting magnetization relaxation process
caused by a spin-polarized current applying in ferromag-
netic multilayer systems, which typically consist of two
ferromagnetic thin films spaced by a nonmagnetic normal
metal. (For review, see [6].) One of the ferromagnetic
films, i.e., ‘‘fixed’’ layer, polarizes electron spins of an
applied current to be parallel to the direction of its
magnetization, and the other, i.e.,‘‘soft’’ layer, is prepared
0031-9007=04=92(9)=097601(4)$22.50 
late and even to be switched by spin transfer from a spin-
polarized current into the film. The spin torque effect has
been experimentally verified in many cases [7].

The spin torque is included in the LLG equation in the
form of [4]

� spin-torque � �	M� �m�M�; (2)

where 	 is the spin torque parameter and � is a
dimensionful constant containing the s� d interaction
coupling constant. M denotes the magnetization of soft
ferromagnetic film, and m is the effective magnetization
due to spin-polarized conduction electrons injected into
the soft ferromagnetic film. At the normal metal and soft
ferromagnetic film interface, the direction of m is the
same as the direction of magnetization of the fixed
ferromagnetic film. Then, it changes as conduction elec-
trons cross the interface and propagate inside the soft
ferromagnetic film. It must be noted that the spin state
of conduction electrons satisfies its own Schrödinger
equation, and one has to solve two coupled equations
for M, m, and the conduction electron’s Schrödinger
equation. Following Slonczewski and Berger, some plau-
sible physical interpretations for the spin torque have been
suggested [8–11].

In this Letter, we discuss a microscopic description for
magnetization relaxation processes, which are repre-
sented by the Gilbert damping term and the spin torque
term in the LLG equation. It is shown that the Gilbert
damping term and the spin torque term are derived from
the spin Hamiltonian containing the interaction between
the spin and the radiation field, which is induced by the
precessing magnetization itself. The derivation of the
LLG equation is given in a self-consistent method [12].

This work is partly motivated by the recent report
by Heinrich et al. [13]. They demonstrated that the
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spin-polarized currents at an interface between a normal
metal and a ferromagnetic film [14], also gives a physical
description for the spin torque effect. This indicates that
there may exist a physical phenomenon describing the
Gilbert damping and the spin torque simultaneously.

We begin with the definition of the magnetic moment
operator (MMO) given by

M̂M � �
�H
�Hext

; (3)

where H is the Hamiltonian operator and Hext is the
external field. The definition of the MMO given by Eq. (3)
uses the notion of the response of a magnetic system to an
external field. According to the definition of MMO, the
magnetization can be defined as an ensemble average of
the response [12]

M�
1

V
Trf�M̂Mg; (4)

where � is the density operator and V is the volume of the
system.

Now we consider the spin Hamiltonian operator H 0,
which describes the spin dynamics in a ferromagnetic
material, given by

H 0 � �g�B

X
i

ŜSi 
Heff ; (5)

where g is the Landé g factor, �B is the Bohr magneton,
and ŜSi is the spin operator of the ith, e.g., atom. In the
following, we use the subscript ‘‘0’’ to indicate that the
corresponding term does not include the radiation-spin
interaction (RSI) effect. The effective field Heff in Eq. (5)
includes the exchange field, the external field, the anisot-
ropy field, and the demagnetizing field. Then, the MMO
and the magnetization become

M̂M 0 � g�B

X
i

ŜSi; (6)

M 0 �
g�B

V

X
i

Trf�ŜSig; (7)

respectively. The equation of motion of magnetization is
obtained by differentiating both sides of Eq. (7) with
respect to time [12],

dM0

dt
�

ig�B

V �h

X
i

Trf��ŜSi;H 0�g � ��M0 �Heff ; (8)

where the commutation relation �Sa
i ;S

b
j � � i �h�abc�ijS

c
i

and d�=dt � 0 have been used, and the validity of evalu-
ation given in Eq. (8) is restricted to quasiadiabatic evo-
lutions. Note that the equation given by (8) does not
include the Gilbert damping term.

Our approach to understand the magnetization relaxa-
tion process is that the damping imposed on the precess-
ing magnetization originates from the magnetization
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precessional motion itself. According to this basic con-
cept, we introduce the RSI, where the radiation field is
induced by the precessing magnetization itself, into the
Hamiltonian. At a glance, the concept of RSI appears to
be the same as that of radiation damping in nuclear
magnetic resonance (NMR) spectroscopy [15]. However,
it is rather similar to the concept of radiation damping of
a charged particle in classical electrodynamics [16].
There is an important difference between the RSI and
the radiation damping in NMR. We give a short comment
on that at the end of this Letter.

The application of radiation damping in classical
electrodynamics (not in NMR) to spin systems can be
found in a recent paper [17]. Following [17], we put the
dissipative torque due to RSI in correspondence with the
radiation reaction force acting on the particle. According
to the analogy, the dissipative torque is represented in
terms of the dissipative part of radiation field Hd

r [18]

�M�
dM
dt

� M�Hd
r : (9)

Replacing the term dM=dt in Eq. (9) with the LLG
equation, Eq. (9) becomes

M �Hd
r � �

��

1� �2M2 M� �M�Heff � �M2Heff�;

(10)

where M is the magnitude of magnetization. Thus, the
dissipative part of the radiation field is read as

H d
r � ��M�Heff � �M2Heff�; (11)

where � � ����1� �2M2��1 is a radiation parameter.
According to the expression for Hd

r given by Eq. (11),
the spin Hamiltonian including the RSI is written as

H � �g�B

X
i

ŜSi

� ��1� �J��M2�Heff � �J�M�Heff�; (12)

where J� is the coupling constant of spins and the dis-
sipative radiation field. The MMO, then, becomes

M̂M � g�B

X
i

��1� �J��M
2�ŜSi � �J�ŜSi �M�: (13)

The difference between M�Trf�M̂Mg=V and M0 given
by Eq. (7) can be considered as evaluating M̂M�M from
Eq. (13). After some algebraic calculations, it is shown
that M is parallel to M0, and its magnitude M is given by
the relation of

Ms
0 �

M

1� �J��M
2 : (14)

It must be noted that the magnitude of magnetization
vector M is not equivalent to the magnetization saturation
Ms

0, but is modified by a correction of the order of O��2�
[because O��J�� � O���]. Since, according to our
097601-2
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proposal, magnetization damping is caused by the magnetization precessional motion itself, the magnitude of
magnetization deviates from the magnetization saturation via its dynamical motion.

From the definition of magnetization, Eq. (4), and the new MMO (13), we obtain the LLG equation including the
Gilbert damping term and an additional new torque:

dM
dt

�
ig�B

V �h

X
i

Trf���1� �J��M2�ŜSi � �J�ŜSi �M;H �g �
�J�

1� �J��M
2 M�

dM
dt

� ���1� �J��M2�M�Heff �
�J�

1� �J��M2 M�
dM
dt

�
���J��

2

1� �J��M2 �M� �M� �M�Heff���; (15)
where Eq. (14) is used. Note that the time derivative in the
procedure has to be performed before the trace operation.
Taking the relation of � � �J�=�1� �J��M2� and using
a simple vector algebra, we show that Eq. (15) becomes
the LLG equation given by Eq. (1).

Now, we study the spin torque effect. First, let us turn
on the s� d interaction without introducing the RSI in
the Hamiltonian.We use the mean field approximation for
the s� d interaction so that the Hamiltonian is written as

H 0 � �g�B

X
i

ŜSi 
Heff �
jsd
g�B

X
i

ŜSi 
m; (16)

where jsd is determined by the interaction between the
effective magnetization m and atomic spins of the soft
ferromagnetic film. Using the definition of magnetiza-
tion, we obtain the equation of motion of magnetization

dM0

dt
� ��M0 �

�
Heff �

jsd
g�B

m
�
: (17)
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The second term on the right hand side represents a torque
due to an effective field �jsd=g2�2

B�m [11].
Next, let us introduce RSI in the Hamiltonian. Since

there are two torques in Eq. (17) driving the magnetiza-
tion to a precessional motion, we have to introduce RSI
terms corresponding to each of them. That is, the
Hamiltonian becomes

H ��g�B

X
i

ŜSi 
 ��1� �J��M2�Heff � �J�M�Heff�

�
jsd
g�B

X
i

ŜSi 
 ��1� �J�	M
2�m� �J�M�m�;

(18)

where � is a radiation parameter due to the effective
magnetization m and J� is the coupling constant between
the radiation field ��jsd=g2�2

B�M�m and the spin.
Then, following the above procedure, we obtain the
LLG equation
dM
dt

� ��M�

�
Heff �

jsd
�g�B�

2 �1� �J�M
2�	� ���m

�
��M�

dM
dt

� ��J� � ��1� �J�	M
2��

jsd
g�B

M� �m�M�:

(19)

In Eq. (19), it is clear that the RSI leads to the spin torque as well as to the Gilbert damping in the LLG equation.
It appears that if � � 	 and �J� � �J�, the spin torque term vanishes in Eq. (19). However, rewriting the Gilbert

damping term, we show that even in this case, the LLG equation still contains the spin torque term:

dM
dt

� �
�

1� �2M2 M�

�
Heff �

jsd
�g�B�

2 m
�
�

��

1� �2M2 M� �M�Heff� �
�jsd

g�B�1� �2M2�
M� �m�M�: (20)
Thus, the Gilbert damping term in Eq. (19) already
includes a part of the spin torque effect. This observation
is directly related to the enhancement of the Gilbert
damping constant by the spin-pumping effect discussed
in [14]. In the equation of magnetization, Eq. (20), the last
two terms on the right hand side compete with each other
in the magnetization relaxation process [10].

The magnetization relaxation process determined by
the RSI depends on the nature of coupling between the
spin and the radiation field produced by precessing mag-
netization. As an example, there are no intermediate
processes like the spin-coil coupling appearing in the
radiation damping in NMR. Thus, the relaxation time
due to the RSI should be longer than that of radiation
damping [20].
On the other hand, the RSI is self-consistently
controlled by magnetization dynamical motion itself.
This means that dynamical effects of magnetic
property, such as damping terms in the LLG equation
and the O��2�-order deviation of the magnitude of
the magnetization vector from the magnetization
saturation given by (14), naturally vanish as taking a
static limit.

In conclusion, the concept of RSI proposed in this
Letter is not restricted to specific features of the systems
considered, e.g., geometric structures. The details of ef-
fects are contained in the characteristic parameters ap-
pearing in the LLG equation without any significant
modification of the procedure developed in this Letter.
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That is, the concept of RSI might be extensively applied
for various magnetization relaxation processes.
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