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Relevance of Cooperative Lattice Effects and Stress Fields in Phase-Separation Theories
for CMR Manganites
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Previous theoretical investigations of colossal magnetoresistance (CMR) materials explain this effect
using a ‘‘clustered’’ state with preformed ferromagnetic islands that rapidly align their moments with
increasing external magnetic fields. While qualitatively successful, explicit calculations indicate
drastically different typical resistivity values in two- and three-dimensional lattices, contrary to
experimental observations. This conceptual bottleneck in the phase-separated CMR scenario is resolved
here considering the cooperative nature of the Mn-oxide lattice distortions. This effectively induces
power-law correlations in the quenched disorder used in toy models with phase competition. When
these effects are incorporated, resistor-network calculations reveal very similar results in two and three
dimensions, qualitatively modifying previous scenarios and solving the puzzle.
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is 2, and only an unphysically large disorder strength �c
can destabilize the uniform 3D FM phase of the random

This propagation emerges from the cooperative nature of
the distortions, since adjacent MnO6 octahedra share an
The study of self-organization in transition-metal ox-
ides (TMO) is one of the dominant scientific themes of
condensed matter physics (CMP). This phenomenon in-
cludes the intrinsically inhomogeneous states of colossal
magnetoresistance (CMR) manganites [1,2] and under-
doped high temperature superconductors [3]. In these
compounds, the competition between different ordering
tendencies leads to complexity: their properties change
dramatically upon the application of relatively small per-
turbations. In Mn oxides, the cross fertilization between
theoretical and experimental investigations has been re-
markably fruitful, and at present the existence of mixed-
phase tendencies in the CMR regime is widely accepted
[4]. The emerging CMR picture is based on nanoscale
clusters of competing phases [2,4–6]. With increasing
magnetic fields, the clusters with ferromagnetic (FM)
characteristics rapidly align their moments, leading to a
percolative insulator-metal transition. Other compounds
share similar phenomenology, and ‘‘clustered states’’ are
emerging as a novel paradigm of CMP [7].

However, an important unresolved issue that con-
fronts the phase-separation scenario for the CMR oxides
concerns the dimensionality dependence of current theo-
retical descriptions. Resistor-network calculations in two
dimensions (2D) reported a colossal MR effect, com-
patible with experiments, near the clean-limit low-
temperature first-order FM-antiferromagnetic (AF) phase
transition [4]. Disorder was further shown to smear the
FM-AF transition region into a glassy clustered state [6].
Well-known arguments [8] predict that, in 2D, infinitesi-
mal disorder is sufficient to create large coexisting clus-
ters of neighboring phases. However, similar simulations
in three dimensions (3D) (shown below) do not lead to
equally impressive resistivity � vs temperature curves.
Within the Imry-Ma reasoning [8] the critical dimension
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field Ising model (RFIM). Moreover, for � � �c the
resulting clusters are not large enough to induce a sub-
stantial �. Therefore, it is crucial to resolve this incor-
rect dimensional dependence. Since the phenomenology
emerging from simulations in 2D matches qualitatively
the experimental results gathered in both 2D and 3D,
mixed-phase tendencies likely dominate in real materials.
Moreover, experiments have unveiled a remarkable insta-
bility of the CE phase to the introduction of disorder in
3D, showing that disorder is by no means irrelevant in
real perovskite manganites [9]. This is also compatible
with recent small-clusters simulations [10,11]. Neverthe-
less, in the transition from realistic models, which cannot
be simulated on large enough lattices for percolation, to
the RFIM-like toy models that can successfully estimate
magnetoresistances [6], an unphysical dimensionality de-
pendence suggests a conceptual ingredient is missing.

In this Letter, the dimensionality-dependence puzzle
is solved. The crucial issue unveiled here is the key
relevance of cooperative effects and stress fields for quan-
titative magnetoresistance studies of Mn oxides. Coopera-
tion introduces correlations in the quenched disorder
needed to render percolative the clean-limit standard
FM-AF first-order transition of simple models of phase
competition. Previous simulations used uncorrelated dis-
order [6], and this induced the substantial quantitative
differences between 2D and 3D. The disorder discussed
here is inevitable —and, thus, intrinsic—in the standard
chemical-doping process widely used to control the hole
density, or average hopping amplitude, in TMO.
Replacing trivalent by divalent ions of different sizes
introduces MnO6 octahedra distortions that cause local
disorder. Once a distortion is created, it propagates fol-
lowing a power-law decay 1=r� governed by standard
elasticity mechanisms that suggest �� 3 (see Ref. [12]).
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FIG. 1 (color online). MC results for the two-orbital DE
model with cooperative JT phonons, on a 8
 8 lattice at low
temperature (T � 0:01, in hopping units). The Hund coupling is
1, and the classical spins are assumed ferromagnetically
aligned for simplicity. Cooperation is included by using the
oxygen coordinates as d.o.f. Only the Q2 mode is active (not a
restrictive assumption, since at x � 0 and 0.5, Q2 is the most
relevant mode [2]). (a) Clean-limit results for 	 � 1:6 > 	c �
1:4, and x � 0:5. The filled and open circles indicate positive
and negative hQ2i, respectively, concomitant with populated
orbitals oriented along the x and y axes. The hQ2i absolute
value, proportional to the dot radius, is related to the charge at
each site. The previously documented stripes [1,2,4] are ob-
served in the simulation (the small deviations from a perfect
arrangement are caused by finite-T effects). (b) Same as (a) but
with four sites (diamonds) where 	 � 0:0. Now the stripe
pattern is drastically disrupted, showing the sensitivity of the
CO state to disorder [10,11]. (c) Illustration of the opposite
effect as in (a),(b): here 	 is subcritical ( � 1:2) everywhere but
in the four sites with the largest dots where 	 � 2 > 	c. A
clean-limit study with uniform 	 � 1:2 reveals no order, but
including just four sites with 	 > 	c creates short-range stripe
order. Here and in (d) the dot area is proportional to hQ2i. (d)
Similar to (c) but for x � 0:0. 	 � 0:4 (below 	c � 0:5) at all
sites but the four with the largest dots, where 	 � 2:0. The
ordered plaquette generates charge ordering on the entire 64-
site lattice.
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oxygen. Cooperation is crucial [13] to study charge-
ordered states at fillings such as x � 0:5. The present
effort shows that cooperation is also crucial for the under-
standing of the dimensionality dependence of CMR
simulations.

The key relevance of cooperative effects can be dra-
matically illustrated via Monte Carlo (MC) simulations
of the two-orbital double-exchange (DE) model coupled
to Jahn-Teller (JT) classical phonons. The Hamiltonian
and details of the simulations have been extensively de-
scribed in previous literature [13]. The explicit use of
oxygen degrees of freedom (d.o.f.) introduces cooperation
in the distortions. To simplify the calculation and allow
the study of 64-site clusters, the t2g classical spins were
frozen in a FM state and the transitions studied here
involve only the charge/orbital d.o.f. This is not restrictive
since recent studies [10] have unveiled charge/orbital
order-disorder transitions at hole density x � 0:5 even
with the spins in a FM configuration, by varying the
electron-phonon coupling 	. The charge-ordered (CO)
phase has the same arrangement of charge and orbitals
as the realistic CE state [10,14]. Although the MC study in
Fig. 1 is necessarily restricted to 2D, this is sufficient to
show the key role of oxygen cooperation, illustrating the
limitations in previous uncorrelated-disorder assump-
tions. Typical results in the x � 0:5 clean limit, and
with 	 larger than the critical value 	c toward a CO
state [10], reveal the familiar pattern of charge-diagonal
stripes with (3x2-r2=3y2-r2) populated orbitals [Fig. 1(a)].
This order is dramatically affected when, to simulate
quenched disorder, the value of 	 is made subcritical in
four sites of the 64-site cluster [just �6% of the sites,
Fig. 1(b)]. The stripe pattern disappears and a random-
looking distribution of charge and orbitals is stabilized,
due to the nonlocal character of the disturbance caused by
the four subcritical sites (compatible with recent simula-
tions [10,11]). In Fig. 1(c), the situation is reversed:
the background has a 	 < 	c and, as a consequence, the
lowest-energy state is not charge/orbital ordered in the
clean limit. However, once four sites carry 	 > 	c, a
stripelike pattern emerges, affecting most of the lattice.
Finally, even at x � 0, having the four sites of a plaquette
above 	c —with the rest below 	c(see Ref. [15]) —is
sufficient to induce a staggered pattern on the entire
cluster [Fig. 1(d)]. These realistic-model simulations
show that cooperation dramatically enhances the role
of quenched disorder in manganite models.

The results in Fig. 1 indicate that it is inappropriate to
use the RFIM with uncorrelated disorder to mimic the
physics of Mn oxides. If a chemical-doping-induced lat-
tice distortion at a Mn-Mn link leads to, e.g., a decrease
of the hopping amplitudes, the neighboring links tend to
have a similar reduction due to the slow power-law de-
crease of the elastic distortion. As a consequence, a
proper RFIM modeling of real manganites requires a
correlation in the random fields. More formally, consider
the modified RFIM Hamiltonian H � �J

P
hijisisj �
097202-2
�
P

i;jhisj=d
�
ij, where si are Ising variables, J is the FM

coupling, � is the disorder strength, and dij is the dis-
tance between lattice sites i and j (in practice, d�ij was
replaced by �1� d2ij	

�=2, with the same asymptotic be-
havior but remaining finite at zero distance). In this
model, a ‘‘random’’ perturbation hi at site i influences
the neighboring dynamical variables sj well beyond the
usual on-site i � j range, as the analysis in Fig. 1 indi-
cates. By redefining, ~hhj �

P
ihi=d

�
ij, the Hamiltonian can

be cast in the standard form H � �J
P

hijisisj � �
P

j
~hhjsj,

but now with correlated disorder since h~hhi ~hhji � 1=d2��D
ij

(D � lattice dimension). The critical value of �—below
which the system breaks into domains for infinitesimal
�—is �c � �D=2	 � 1, which for D � 3 is �c � 2:5 (for
097202-2
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details, see Ref. [16], and references therein). The impor-
tant point for our purposes is that correlated disorder can
alter the critical dimension, and its value can be raised to
3 if � � 2:5. To test these ideas, the Hamiltonian H has
been studied using algorithms that allows for the direct
calculation of RFIM ground states [17] (see Fig. 2). In
agreement with our expectations, there is a dramatic
qualitative difference between the results obtained with
uncorrelated disorder (� � 1) and those obtained using a
value of � (� � 3) that more realistically mimics the
elasticity. In particular, Fig. 2 shows that the former
exhibits a large �c and small clusters, while the latter
has large clusters and a �c � 10 times smaller than the
value obtained with uncorrelated disorder.

To further verify these ideas, the formalism already
presented in Ref. [6] is here employed. To generate phase
competition, a simple spin model with competing inter-
actions is used H � �J

P
hijisisj � J0

P
�ik�sisk, where si

are Ising variables, and J (J0) is a nearest-neighbors (next-
nearest-neighbors) FM (AF) coupling. For small J0=J, the
T � 0 dominant state is FM, while at large J0=J it has
FIG. 2. Top panel: computer-generated ground-state magneti-
zation hm�T � 0	i of the RFIM vs �, for several values of the
disorder correlation exponent. � � 2:5 is the predicted 3D
critical value below which infinitesimal disorder will destroy
long-range order. Note the dramatic difference among the
several �s. The inset shows hm�T � 0	i vs � for three different
lattice sizes and � � 3, to illustrate finite-size effects. Bottom
panel: snapshots of a typical random field distribution ~hhi (top
row) and corresponding Ising spin configuration (bottom row),
for three �s on a 1282 lattice and �=J � 1, to visualize cluster
sizes and shapes. 2D clusters are used to access large linear
sizes, but results are similar in 3D [see Fig. 3(c)] [18].
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collinear AF features (alternating lines of spins up and
down). The clean-limit critical value is J0=J � 0:25 (0.5)
in 3D (2D). Disorder is introduced by the replacement
J0 ! J0ik � J0 �W~��ik at every plaquette diagonal, with
~��ik being random numbers in �1=2;�1=2� spatially cor-
related as ~hhj. Disorder reduces the values of the clean-
limit critical temperatures T� to TC —as extensively
discussed before [2,6]— creating an intermediate T re-
gion where FM clusters with random moment orienta-
tions are found. A grid of resistors can be constructed and
the effective cluster resistance can be calculated, follow-
ing standard procedures [6]. Results are in Fig. 3.
Figure 3(a) shows the net resistivity � vs T, at several
J0s, with weak (W � J) disorder incorporated. For all J0s,
a fairly sharp peak is found between TC and T� for � � 3,
the exponent that mimics the effect of elastic forces.
These � profiles are in good agreement with Mn-oxide
experiments. Figure 3(b) illustrates the W dependence of
the results. For sufficiently large W, the clusters are small
and � is not enhanced at intermediate temperatures. As W
is reduced, the clusters increase in size and the peak in �
develops. Figure 3(c) contains � vs T, parametric with
magnetic fields, for the case of uncorrelated disorder. In
agreement with the introductory discussion, � here is
2 orders of magnitude smaller than with correlated dis-
order, illustrating the dramatic differences that correlated
quenched disorder, mimicking stress fields, causes in the
FIG. 3. (a) J0 dependence of � (in units of the metallic
regions resistivity �0) for the 3D J-J0 model with long-range
correlated disorder (� � 3), at W=J � 0:05. (b) � dependence
on the disorder strength W, at J0=J � 0:23. (c) � in 3D without
long-range correlated disorder (i.e., at � � 1), much smaller
than in (a),(b). (d) Slice of a 323 lattice at T=J � 1:4, J0=J �
0:23, and W=J � 0:05. Black and dark gray are FM regions
with opposite orientations of their magnetic moments, and light
gray are competing state (collinear AF) regions.
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FIG. 4. (a) �=�0 vs T for the J-J0 model (J0=J � 0:23 and
W=J � 0:05) with long-range correlated disorder (� � 3), in
3D and for the magnetic fields indicated. Solid (dashed) lines
are results on 163 (323) lattices. (b) Same as (a), but on a 642 2D
lattice, with J0=J � 0:68 and W=J � 0:1. Clearly, now both 2D
and 3D results are quite similar in magnitude.
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quantitative results. Finally, dominant MC configuration
snapshots [Fig. 3(d)] reveal an intricate cluster arrange-
ment in the T region of interest if � � 3—far from the
uniformly polarized state at the same W if � � 1—
intuitively justifying the observed high � values [2,6].
The proximity of � � 3 to �c � 2:5, and the anticipated
further effective reduction of � if Coulombic disorder
effects were incorporated, lead us to believe that the
sub-�m clusters reported in Ref. [5] could indeed be
intrinsic to Mn oxides. It is the combination of phase
competition and correlated disorder that creates the
CMR behavior in our 3D toy model. The effect substan-
tially decreases away from the phase competition
region, even though the correlation in disorder remains
always ‘‘on.’’

Although the previous results show that disorder-
correlation effects are important, only a magnetoresis-
tance estimation can clarify its role in the CMR effect
itself. For this purpose, Fig. 4 contains a 3D/2D resistor-
network calculation of �, with correlated disorder, vary-
ing the magnetic field. The peak in the resistivity—
between TC and T�—is clear and has a similar value in
both 3D and 2D. This is a considerable improvement over
results with uncorrelated disorder, where the peak resis-
tivity ratios between 2D and 3D are as high as 200 or
more [see Ref. [6] and Fig. 3(c)]. The effect of small
magnetic fields— that effectively ‘‘rotate’’ preformed
FM clusters—is now strong in both dimensions of inter-
est, and colossal MR ratios are obtained with minimal
tuning of couplings (Fig. 4).

Summarizing, explicit calculations in toy models for
the CMR phenomenon show that the critical dimension of
the system is altered by disorder correlation, and when
elasticity effects are included magnetoresistance ratios of
comparable magnitude are obtained in 2D and 3D. These
results are qualitatively different from previous investi-
gations and remove a conceptual roadblock of phase-
097202-4
separation-based theoretical studies of manganites by
demonstrating the importance of cooperative effects, re-
affirming the potential relevance of clustered states in the
description of TMO.
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