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Fluctuations and Stability of Superfluid Turbulence at mK Temperatures
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Turbulent flow of superfluid 4He at mK temperatures around an oscillating microsphere is known to
be unstable at low driving forces, switching intermittently between turbulent and laminar phases. The
lifetimes of the turbulent phases are exponentially distributed, and the mean lifetimes grow exponen-
tially with the square of the driving force. These experimental results are attributed to statistical
fluctuations of the density L of the vortex line length. As a result, a normal probability distribution of
L2 is found having a standard deviation of 2:9� 1014 m�4 and a spectral bandwidth 	! � 13 s�1.
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FIG. 1. Time series of intermittent switching of the velocity
amplitude at 300 mK and two different driving forces. The low
level corresponds to turbulent flow while the increase occurs
during a laminar phase. At a driving force of 55 pN (upper
Without going into the details of the experimental
technique, which has been described in Ref. [4], the

trace) the turbulent phases are short-lived while at 75 pN
(lower trace) their lifetimes are much longer.
Turbulence in superfluid 4He at very low temperatures
has gained considerable interest in recent years.When the
normal fluid component is absent (only a very dilute gas
of ballistically propagating thermal phonons is left below
about 0.5 K) turbulence in the pure superfluid can be
studied. Because of its quantum mechanical properties,
the turbulent state of the superfluid consists of a tangle of
identical and individual vortex lines having a core of
atomic size and the same quantized circulation � �
h=m4, where h is Planck’s constant and m4 is the mass
of a 4He atom [1]. This situation appears to be much
simpler than turbulence in a classical liquid, and one
might wonder whether an understanding of superfluid
turbulence could have an impact on the more complicated
problem of classical turbulence. Furthermore, turbulence
in Bose-Einstein condensed gases has many properties in
common with that in the dense Bose liquid 4He [2], and
there is great interest in comparing both cases. In addi-
tion, turbulence studies in the fermionic superfluid 3He,
where the powerful tool of nuclear magnetic resonance is
available, very recently have yielded exciting results [3]
that demonstrate both similarities and differences of the
turbulent behavior when compared with 4He.

In contrast to superfluid 3He and the condensed Bose
gases, the experimental techniques for turbulence studies
in 4He at very low temperatures are rather limited so far,
because the standard technique to detect vorticity by ab-
sorption of second sound, which works well above 1 K,
fails in the millikelvin regime. Recently, a detailed study
of turbulent flow around an oscillating microsphere has
been published [4]. The flow pattern (either turbulence or
potential flow) determines the oscillation amplitude due
to the different drag forces, and therefore it can be easily
identified. The experimental results on the stability of the
turbulent flow are analyzed quantitatively in this work.
Based on a model of statistical fluctuations of the density
of the vortex lines, an analysis is presented that gives a
first insight into the probability density and the spectral
distribution of these fluctuations in the mK regime.
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essential results can be summarized as follows. At low
driving forces and hence at low oscillation (and velocity)
amplitudes (oscillation frequency ca. 120 Hz), the flow
around the sphere (radius 0.12 mm) is laminar, the only
drag force is due to ballistic phonon scattering, and, there-
fore, it decreases rapidly below 0.5 K. When the driving
force is increased, an abrupt transition to turbulence
takes place at a critical velocity amplitude of about
20 mm=s. However, below 0.5 K turbulence is observed
to be unstable and the flow switches intermittently be-
tween turbulence and potential flow, indicating that the
balance between vortex production and annihilation is
still marginal.

In Fig. 1 two time series of the velocity amplitude at
fixed temperature and driving force are shown. During a
turbulent phase the velocity is low due to the large turbu-
lent drag while during a laminar phase the velocity
amplitude relaxes towards a higher level determined by
phonon scattering until a new turbulent phase is born. In
the following the lifetimes of the turbulent phases are
discussed in detail.

Figure 2(a) shows that the lifetimes t of the turbulent
phases are exponentially distributed and the mean life-
time hti can be determined. In Fig. 2(b) the mean
2004 The American Physical Society 095301-1
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FIG. 3. Sketch of a statistical fluctuation of the vorticity with
the down crossings of a given level below the mean value. The
time of the first down crossing is the measured lifetime of a
turbulent phase.
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FIG. 2. Statistical analysis of the lifetimes t of the turbulent
phases. (a) The normalized numbers of turbulent phases R�t�
have an exponential distribution of t at a given temperature and
driving force. From the slope of the straight line fit the mean
lifetime is obtained. (b) The mean lifetimes measured at
different temperatures and driving forces as a function of the
turbulent drag force. The solid line is a fit of Eq. (1).
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lifetimes at various temperatures are displayed as a func-
tion of the turbulent drag force Fturb, which is the differ-
ence between the driving force and the linear phonon drag
at the turbulent velocity [4]. It is obvious that a universal
curve is obtained for all temperatures showing a very
rapid increase of hti until the lifetimes exceed the record-
ing time and turbulence appears to be stable. The varia-
tion of the mean lifetime is described by

hti � t0 exp
�
Fturb

F0

�
2
; (1)

where t0 � 0:5 s and F0 � 18 pN. Multiplying the forces
in Eq. (1) with the velocity amplitude of the turbulent
phase and dividing by 2, we have the dissipated power P
as a new variable and the exponent becomes �P=P0�

2 with
P0 � 0:20 pW. The dissipated power per unit mass � �
P=M (M � 0:46� 10�6 kg is the mass of the turbulent
liquid in the measuring cell) is an important quantity
both in classical turbulence and in quantum turbulence
[5] because it is related to the vorticity. Assuming that the
basic ingredients in superfluid turbulence are the circu-
lation quantum � and the length of vortex lines per unit
volume L (which has the dimension m�2) we have from
dimensional arguments �	 �3hL2i and a vorticity �hLi.
Averages are used because it is not known how the dis-
sipated power is distributed over the volume of the tur-
bulent liquid (3:1� 10�9 m3). We replace now P=P0 by
hL2i=L2

0, where L0 �
������������������
P0=M�3

p
� 2:1� 107 m�2 and

hence Eq. (1) can be written

hti � t0 exp
�
hL2i

L2
0

�
2
: (2)

The following model to describe these experimental
results is based on statistical fluctuations of the vorticity.
It is suggested that a fluctuation of L2 below the mean
value and larger than a certain threshold will cause a
breakdown of the turbulent state and a recovery of the
laminar phase. This idea is sketched in Fig. 3 where a
random process is shown to fluctuate around its mean
value. The lifetime of the turbulent state is given by the
time of the first down crossing below a certain level. The
properties of level crossing by a random process are
mathematically very well investigated [6] and extensive
use is made of this literature in what follows. First of all,
the down crossings constitute a Poisson process on the
time axis, and therefore the time intervals are exponen-
tially distributed. Accordingly, the time of the first down
crossing is also exponentially distributed when the system
is restarted many times with a new turbulent phase.
Moreover, it is plausible that an increased drive will shift
the mean value hL2i away from the threshold; hence, a
larger negative fluctuation is needed for a first down
crossing, and, consequently, the lifetimes of the turbulent
states will grow. Thus, there is a qualitative agreement
with the results in Fig. 2.
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For a more quantitative analysis we apply Rice’s for-
mula [6] for the average number hNi of down crossings per
unit time of a level C (below the mean value) of a sta-
tionary normal process ��t� with zero mean and variance
�2

�, namely,

hNi �
1

2�

���������������
�r00�0�

p
exp

�
�

C2

2�2
�

�
; (3)

where r00�0� is the second derivative of the autocorrelation
function of the random process at the origin and is related
to the second spectral moment by

�r00�0� �
Z 1

0
!2S�!� d!; (4)

with S�!� being the spectral density function of the
process. The exponential dependence of hNi on the level
C reflects the assumed normal probability density func-
tion (PDF) of the underlying process f��� �
�1=

�������
2�

p
��� exp���2=2�2

��. From the measurements of
the average time hti of the first down crossing we have
the condition
095301-2
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hNi 
 hti � 1;

and therefore

hti �
1

hNi
�

2����������������
�r00�0�

p exp

�
C2

2�2
�

�
: (5)

Comparing Eq. (5) with Eq. (2) we can draw the follow-
ing conclusions. L2 fluctuates around the mean level hL2i,
which is proportional to the dissipated power, and the
down crossings refer to a level at zero vorticity. When a
fluctuation reaches the hL2i � 0 level, turbulence van-
ishes, of course, and a laminar phase is established tem-
porarily. Furthermore, the fluctuations of L2 have a
normal distribution [7] with a standard deviation �L �
L2
0=

���
2

p
� 2:9� 1014 m�4. The typical length scale of

this turbulent state is L�1=2
0 � 0:22 mm, i.e., about the

diameter of the sphere. This indicates a rather sparse
vortex density, but one should keep in mind that this
estimate is based purely on dimensional arguments and
is valid probably only within an order of magnitude.

The spectral properties of the fluctuations of L2 can
be found from the second spectral moment. From
Eqs. (5) and (2) we have 2�=

���������������
�r00�0�

p
� t0 � 0:5 s.

For spectral densities that differ from zero only near ! �
0, one can estimate the bandwidth (within a factor of
order one [8]) 	! 	

���������������
�r00�0�

p
� 2�=0:5 s � 13 s�1.

This small value of the spectral bandwidth may be sur-
prising, but from the preceding dimensional arguments
we obtain the same typical time scale 	 1=�L0 � 0:5 s.

In summary, the finite lifetime of the turbulent flow of
superfluid 4He below 0.5 K around an oscillating sphere
gives quantitative information on the properties of turbu-
lent fluctuations of L2, which is the square of the vorticity
or the enstrophy in classical turbulence. The PDF of the
fluctuations is shown to be of the Gaussian form, and the
standard deviation can be obtained. From the measured
second spectral moment the bandwidth can be estimated.
Stability of turbulence is reached when the dissipated
power and, hence, hL2i is increased so much that the
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lifetime begins to exceed the measuring time. These
results are found to be independent of temperature when
thermally excited quasiparticles are negligible. It will be
interesting to see how this behavior looks like in super-
fluid 3He. Finally, one could imagine that the model
presented here is not only applicable to vorticity fluctua-
tions in superfluid turbulence but to other instabilities as
well, which are caused by random fluctuations exceeding
a certain level.

The data that are analyzed here were obtained with the
assistance of my students H. Kerscher and M. Niemetz to
whom I owe many thanks for a superb performance. An
interesting discussion with O. Avenel on Poisson pro-
cesses is gratefully acknowledged.
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