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Stationary Rarefaction Wave in Magnetized Hall Plasmas
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We demonstrate the existence of a stationary rarefaction wave in a current-carrying plasma. The
result unexpectedly mismatches with the commonly accepted viewpoint about the impossibility of
rarefaction shocks in gases or plasmas. The discovered wave may appear when the magnetic field has
penetrated into the plasma and magnetized the electrons. At this stage, the wave front is formed at the
cathode and propagates towards the anode through the magnetized quasineutral plasma. The case of low
collisionality is investigated analytically. This phenomenon could explain the recent surprising
experimental observations of a local plasma density drop in several laboratory plasmas.
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FIG. 1. The magnetic field B0 is generated by an external
current I0. Anode and cathode may represent either electrodes
could cause then substantial plasma rarefaction [7]. or nonmagnetized, denser [see Eq. (1)] plasma regions.
During the last decade the so-called pulse-power
plasma devices became sources of the highest electrical
power ever achieved in the laboratory [1]. The classical
problem of the interaction of a magnetic field with plas-
mas acquired particular interest for these physical objects
(e.g., plasma filled diodes and switches or different types
of Z pinches). Indeed, the magnetic field is usually known
to penetrate a plasma conductor through diffusion.
However, already the first space- and time-resolved mea-
surements of the magnetic field evolution in low-density
pulsed plasmas unexpectedly demonstrated a different,
faster than diffusion, more shocklike fashion of the field
flowing [2]. Almost at the same time [3], it was theoreti-
cally stated that the frozen-in law for a strong magnetic
field indeed could lead to its fast penetration appearing as
a solution of a Burgers-type equation. Provided an initial
density gradient, magnetic field propagation occurs as a
shock with the velocity

u KMC � �c=8�ene��B�r lnne� (1)

(B is the magnetic field, ne is the electron density, c is the
speed of light, and e is the electron charge).

As usual, reasonable agreement between the first ex-
periments and theory, as well as practical importance of
the physical objects under interest provoked extensive
theoretical study of the phenomenon (see the review in
[4]). Today, the plasmas considered in these studies are
already widely referred to as Hall plasmas. The most
common feature here is that the electrons are magnetized,
the ions are not, and the Hall electric field EH �
��ve �B�=c must be kept in Ohm’s law.

There exists another interesting experimental observa-
tion in this class of plasmas, which has not been reliably
explained yet. Experiments [5–7] showed that the plasma
density was abruptly decreasing by about 1 order of
magnitude at the characteristic lengths comparable to
the plasma size. Unexpectedly, instead of producing
plasma compression, the magnetic field could first propa-
gate on the background of almost motionless ions and
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In explaining this unusual behavior of the magnetized
plasmas, let us pursue the following logic. In the fast
shocks of Eq. (1) (uKMC 	 vA, vA is the Alfvén velocity),
the plasma compression is low because the ions are af-
fected by EH only during a short time [6,8]. On the
contrary, behind the penetration front, this field may
accelerate the ions until they exit the system creating
conditions for local plasma rarefaction (see Fig. 1). This
physical scenario was pointed out previously by Rudakov
[9]. The present Letter grounds this possibility in the
framework of the Hall MHD and theoretically discovers
that this process acquires the form of a stationary shock-
like rarefaction wave. It is interesting to note here that in
conventional hydrodynamics the existence of rarefaction
shocks is prohibited in media with normal thermody-
namic properties (the so-called Zemplen theorem [10]).

We will consider the problem in plane geometry shown
in Fig. 1, where a quasineutral plasma is already magne-
tized after the process of Eq. (1). In our frame of reference
we have for the fields B 
 �0;�B; 0�, B > 0, E 

�Ex; 0; Ez�, and vi 
 �Vx; 0; Vz�, ve 
 �vx; 0; vz� for the
ion and electron velocities, respectively. The character-
istic sizes are such that � � h and @=@z� 1=h � @=@x.
In addition, jVxj 	 jVzj and vz 	 vx. We neglect the
thermal pressure, B2 	 nT. The important point of our
problem is that initially the magnetic field may represent
a weak monotonic decreasing function of z, B � B0�z�.
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This assumption is grounded, see Eq. (1), in the plasma
part where the density decreases with z, for example,
towards the downstream plasma boundary with vacuum.
Therefore, we will normalize the magnetic field and
plasma density to the maximal initial values in the non-
perturbed plasma, Bm and nm accordingly. After that, we
normalize time to !�1

ci (inversed ion cyclotron fre-
quency), coordinates to c=!pi (!pi is the ion plasma
frequency), velocities to vA, electric field to the value
BmvA=c, and collisional frequency to !ce (electron cy-
clotron frequency). All the values are calculated upon
Bm and nm.

In this problem statement, we would obtain, for ex-
ample, for the ion momentum equation:

n
dVx
dt

� n
�
@Vx
@t

� Vx
@Vx
@x

�
� �b

@b
@x

; (2)

where, for ions or electrons, the total time derivative is as
usual d=dt � @=@t� �vi;er�. Continuing to use our ap-
proximations, the Ampere’s law and continuity equations
will appear as

@b
@z

� n�Vx � vx�;
@b
@x

� nvz; (3)

@n
@t

�
@
@x

�nVx� � 0: (4)

Let us now suppose that there propagates a wave in the
X direction with the front velocity u�z� > 0, so that
@=@t � �u@=@x. Integration of Eqs. (2) and (4) across
the front yields

1

n
�

1

n0
�
b20 � b2

2n20u
2 ; Vx �

b2 � b20
2n0u

: (5)

In difference with a similar system of equations used in
[8] we suppose b � b0�z� and n � n0�z� in initially mag-
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netized nonperturbed plasma. Besides, we will seek for a
solution with u > 0 and Vx < 0, when n < n0 and b < b0
behind the wave front. Equation (5) does not yet respond
to the question about the character of the shock wave
(compression or rarefaction). So, we proceed with our
analysis using the generalized Ohm’s law

0 � �Ex � vzb; "
dvz
dt

� �Ez � vxb�  vz; (6)

where " 
 m=M is the ratio of electron mass to the
ion mass and  is the normalized collisional frequency.
The system of equations should be completed by the
Faraday’s law

@b
@t

�
@Ex

@z
�
@Ez

@x
: (7)

At this point, let us consider the case of a strong
rarefaction wave, n � n0 [u � 1 in (5)]. This will
shorten the form of derivations without limiting the gen-
erality of the final conclusions. Using @=@t � �u@=@x
and Eq. (5) at u � 1, we integrate (7) across the wave
front and obtain, for the sum of forces acting on electron
fluid in Eq. (6),

�Ez � vxb � F0�b�; F0�b� 
 �F�b�=2n0u; (8)

F�b� � �b20 � b2�b� #�b20 � b2�2 � $�b20 � b2�;

# 
 �
1

2n20u
2

dn0u
dz

; $ 
 �
1

2n0u
db20
dz

:
(9)

Here both # and $ are positive. During the integration
we have taken into account the boundary condition
F0�b0� � 0 in the unperturbed plasma at the anode.
Further substitution of Eqs. (3) and (8) into (6) results
in the following form of Ohm’s law:
"
n0u
n

@vz
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� F0�b� � 0; fb; vzg 
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�
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: (10)
We look for the solution of Eq. (10) in the form
b�x; z; t� � b�z; %�, where % 
 �x� u�z�t�f�z�. With this
new variable and still for u � 1 the Eqs. (3), (5), and (10)
yield

"f2n0u
n

�
d
d%

�
1

n
db
d%

�
�
g�b�
n

�
db
d%

�
2
�
�
 f
n
db
d%

� F0�b� � 0;

(11)

g�b��
2$

b20�b2�2n0u2
�

4#�b20�b2�

b20�b2�2n0u2
�(�z�; (12)

(�z� 
 �
1

n0�z�u
d lnf�z�
dz

: (13)

We further introduce a new variable, d) 
 d%�
n=�n0uf

���
"

p
�, and a new function, Y�b� 
 db=d) . Our

main Eq. (11) then appears as follows:
dY2

db
� 2g�b�Y2 � 2+Y � F�b�; (14)

where + �  =
���
"

p
. We further consider the case of small

collisions, + ! 0.
Ultimately, we came from Eq. (6) to Eq. (14) and

should define now the boundary conditions. First, the
sum of forces F�b� must be equal to zero at both super-
conducting electrodes in order to prevent the current jz
from rising without limitations in (6). Besides Eq. (5)
signifies Y�b�jC;A � db=d) � 0 and from Eq. (14)
we also have that dY2=dbjC;A � 2d2b=d)2 � 0. Indeed,
Eq. (14) may have a solution satisfying all these
conditions:

Y2�b� � e�G�b�
Z b

bmin

F�b0�eG�b
0�db0 (15)
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FIG. 2. (a) Calculated function (�z� (see the text).
(b) Corresponding solution (15) at z � 7 satisfying the neces-
sary boundary conditions. Here bmin � 0:223, bf � 0:354, and
b0 � 0:779.
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with G�b� 

R
2g�b�db. In the region sufficiently far

from the anode, b20 � b2 	 n0u
2 we have using (12)

G�b� � �2�4#� (�b�
2$
b0

ln

�
b0 � b
b0 � b

�
: (16)

Thus, G�b� � /b� C and the integral (15) can be
easily taken representing the analytical solution of our
problem. Y�b�jC � 0 automatically in (15), and the proper
choice of ( function [note that f�z� can be arbitrary in
(13)] will further allow us to satisfy Y2�b0� � dY2=db �
0 at the anode. As the final expression acquires quite a
bulk form we do not present it here.

Interestingly, the behavior of the function Y�b� can be
analyzed without direct calculation of the integral (15).
Starting with zero value at the cathode, the function Y�b�
then rises [db=d)jC > 0, see (3) with vz > 0] and should
have a maximum in the midgap. From Eq. (15) this
signifies that F�b�, having zero value at the cathode,
must change its sign from positive to negative and it
becomes again zero at the anode. Indeed, we can find
three real positive roots of Eq. (9)

b� b0; b� bf;min �
1

2#
�

�
1

4#2�
$
#
�b20

�
1=2
: (17)

The condition b0 > bf > bmin > 0 (bmin at the cath-
ode, bf at the front and b0 at the anode) is equivalent (as
# > 0) to

#b20<$<#b20 �
1

4#
; $ > b0; # >

1

2b0
: (18)

The inequalities (18) allow us already to construct the
rarefaction profile for some initial distributions n0�z� and
b0�z�. To demonstrate this, let us suppose that u�z� �
const and, in the first order,

n0�z� � 1� z=h1; b0�z� � 1� z=h2: (19)

For each plasma length h one can find a number of
values u, h1, and h2 satisfying the inequalities (18) at all
the axial positions. Let us choose the maximum velocity,
umax, which can be realized for given h. In this case, at the
limit of validity of the inequalities (18), the following
estimates can be kept:

hmin
1 � 2h; hmin

2 � 3h; umax �
1

3h
: (20)

It is easy now to plot the profile of Eq. (15).We take, for
instance, h � 10, h1 � 21, h2 � 31:7, and u � 1=32 in
(20) and thus satisfy Eq. (18). For each given z, 0< z< h,
there exists the value of (, which puts the integral of
Eq. (15) to zero at the anode. The resulting dependence
(�z� is presented in Fig. 2(a). The finally appearing wave
profile is illustrated by Fig. 2(b) for some axial position.

Thus, Eq. (14) does correspond to a regular rarefaction
wave with b < b0 and u > 0 [n < n0 in (5)]. For the
magnetic field front width we find �) � 1, �x�

���������
"=n

p
that corresponds to the size of 0� c=!pe in dimensional
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units, i.e., is defined by the electron inertia, as it should
be. It can be shown that the wave still exists in the colli-
sional case + � 0 in Eq. (14). Similar to the compression
waves [8], the front width is defined by collisions and
widens with the increase of parameter +. The density
drop is independent of plasma collisionality, as it follows
from Eq. (5), and tends here to n0=n ! 430.

Concluding with the collisionless case, the proce-
dure for obtaining Figs. 2(a) and 2(b) can be repeated
for other z. Together with definitions of the variables )
and %, this provides us with the picture of Figs. 3(a) and
3(b). The wave arises due to acceleration of the ions, Vx,
by the Hall electric field in the current layer near the
cathode (t � t1). It propagates further through the quasi-
neutral magnetized plasma and can create a higher than
1 order of magnitude density drop (t � t2).

The magnetic field is brought into the plasma being
frozen in the electron component, which has the velocity
ve, Figs. 3(a) and 3(b). As the density decreases along
electron trajectories, the specific magnetic flux, vzb, ex-
iting the plasma region is greater than that entering it.
This corresponds to shrinking of the contour � with b0,

�
d’
dz

�
d
dz

Z �

0
vzbdx�

d _��

dz
��u

Z �

0

@b
@x

dx��ub0< 0;

(21)

and, therefore, supports a rarefaction wave having veloc-
ity u. Here ’ is the voltage drop and _�� is the magnetic
flux change rate. Subsequently, the magnetic field has
to be frozen out of the electrons and exits the system.
In practice [2,5–7], when the described Hall plasma could
be used for current switching into a load connected
downstream, this event must happen and results in ap-
pearance of the load current, Jd � �bc�h� � ’�h�=R,
where R is the load resistance, and bc�z� ! bmin�z� is
provided by Eq. (17). In our consideration of the problem,
095007-3



FIG. 3. Calculated two-dimensional density (a) and magnetic
field (b) maps for the initial profiles of Eqs. (19) and (20) and
for two time moments. Here x and z are dimensionless coor-
dinates, ve corresponds to the plasma electron current, and
bc�z� is the magnetic field of the cathode part of the total
current through the plasma region.

P H Y S I C A L R E V I E W L E T T E R S week ending
5 MARCH 2004VOLUME 92, NUMBER 9
the electrodes are far enough from the wave front, but the
flux freezing out is implicitly assumed and may occur, for
example, in collisional anode plasma [4] [point A in
Fig. 3(b)].

The magnetic energy is initially supplied to the plasma
by the generator and can be calculated using the obtained
solution b�x; z�. A part of this energy goes to the kinetic
energy of ions accelerated in the Hall electric field,
V2
x=2 � j’j. Thus, Eq. (5) with b � bc yields the voltage

value, which tends to its maximum at bc � bmin as the
wave advances, see Figs. 3(a) and 3(b). The ion kinetic
energy is further dissipated at the cathode and the asso-
ciated positive charge reduces the cathode current, Jc �
�bc [bc�z� is a decreasing function]. The rest of the en-
ergy in the system includes the Poynting flux, ’�h�bc�h�,
towards the load and the earlier mentioned dissipation in
the triple point A. Consideration of the total energy bal-
ance with all the listed parts provides with a quantitative
value for this dissipated energy. We postpone more details
of this discussion to a later publication.

Equation (21) allows also a simple estimate for the
front velocity, u� hb2=2ni=b0h� 1=2h, close to the re-
sult of Eq. (20). In dimensional units, this velocity ap-
pears as the fundamental Hall velocity of Eq. (1),
corresponding here to expulsion of the magnetic field.
Existence of such expulsion was discovered before [11]
for collisional plasmas with motionless ions, similarly
to how Eq. (1) was obtained. We confirm this possibil-
ity also for a zero-resistivity plasma by keeping the
electron inertia term, and a slower magnetic field evolu-
tion than that appearing in [11] leads to considerable
plasma motion in this case.

The initial assumptions, c=!pe � c=!pi � h (see
Fig. 1 and the nearby text), are met in quite broad range
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of laboratory or space plasmas [4]. Our main conclusion,
while contradicting the universal conception from the
conventional hydro [10], could explain the experimen-
tally observed unusual pulsed-plasma behavior [5–7]. In
these experiments, the magnetic field flowed into the
plasma at considerably higher axial velocity than that of
the ions, supporting applicability of Eq. (1) and of the
system (2)–(7). Acquisition by the ions of much higher
radial velocities than the axial ones jVxj 	 jVzj, that
leads through the solution of the derived Eq. (14) and
from Eq. (5) to rarefaction in our model, is not in contra-
diction with experimental observations either. Finally, the
analysis (15)–(18) proposes the traveling profiles of
Figs. 3(a) and 3(b) for understanding the observed sub-
sequent plasma density drop.

In conclusion, this Letter states that the Hall plasmas
can support rarefaction shocks. Unlike the conventional
gas and magnetohydrodynamics, where such jumps with
n < n0 are not stable and decay [10], the discovered waves
can be regular and their stationary space profile has been
derived. For the collisionless case and large discontinui-
ties, n � n0, we investigated an example of the fastest
wave existing for some realistic initial profiles of plasma
density and magnetic field. Further theoretical work will
address the issue of the rarefaction wave influence on the
macroscopic Ohm’s low (voltage-to-current dependence)
for these plasmas.
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