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Production of Nonisothermal Electrons and Langmuir Waves Because of Colliding Ion Holes
and Trapping of Plasmons in an Ion Hole
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We present new simulation studies exhibiting production of nonisothermal electron distributions and
Langmuir waves by colliding ion holes and trapping of plasmons in an ion hole. We find that, during
head-on ion hole collisions, streams of accelerated electrons are produced by the electrostatic potentials
supporting the ion holes. Subsequently, Langmuir waves are excited by a two-stream instability
involving energetic electron beams. The resulting Langmuir waves can be trapped in an ion hole.
The present ion-hole-Langmuir wave interactions are unique kinetic phenomena which can be dealt
with a Vlasov code, which we developed recently. The results can have relevance to the understanding
of particle and field data that are forthcoming from different spacecraft missions in Earth’s auroral
ionosphere and the magnetosphere.
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Phase space electron and ion holes are typically asso-
ciated with nonisothermal electron and ion distribution
functions [1,2] that are far away from the Maxwellian
distribution in plasmas. Phase space vortices are products
of the two-stream instability in which linearly excited
plasma modes acquire large amplitudes and saturate by
trapping electrons or ions (depending on the phase speed
of the waves) in the wave potential [3]. On the other hand,
seed ion holes carrying plasmas can have a negative
energy property, which implies that ion holes may grow
even in linearly two-stream stable situations [4]. In the
early seventies, Schamel [5] presented an elegant analyti-
cal method for finding physically acceptable solutions to
the Vlasov-Poisson system. By prescribing both trapped
and free particle distributions and by applying the so-
called potential method, phase space holes [5,6] and
double layer solutions [7] could be constructed which
agree with laboratory observations [1]. Observations
from laboratory experiments [8,9] and measurements
from numerous spacecrafts [10–15] in Earth’s auroral
ionosphere and the magnetosphere reveal the formation
of phase space electron and ion vortices and associated
solitary waves/bipolar electric pulses. Computer simula-
tion studies [16,17] also reveal the significance of phase
space vortices in space plasmas. Magnetic field aligned
large-scale electric fields and potentials are thought to be
the main source of accelerated electrons found in Earth’s
auroral zone [10,11], where electrons are accelerated up to
ten electron thermal speeds in the upward current region
and to 104 electron thermal speeds in the downward
current region.

In this Letter, we present for the first time new simu-
lation results exhibiting collisions between two ion holes,
which lead to the production of energetic electrons whose
distribution function is nonisothermal on account of their
acceleration by the localized (small-scale) electrostatic
potentials of interacting ion holes. Streaming electrons,
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in turn, generate Langmuir waves via a two-stream in-
stability. In the past, it has been shown that nonlinear
interactions between Langmuir waves and nonresonant
ion-acoustic perturbations give rise to new classes of en-
velope Langmuir solitons involving modified Boltzmann
electron density distribution with [18] and without [19]
trapped electron effects. Schamel and Maslov [20] pre-
sented an analytical description of Langmuir wave
trapping in the density trough provided by the small
amplitude electron hole. On the other hand, our simula-
tion study here shows that Langmuir waves can be
trapped in a large-amplitude ion hole, and that these
Langmuir waves exhibit signatures of a downshifted
frequency band compared to the surrounding plasma fre-
quency, in agreement with our theoretical predictions
[21].We find that two counterpropagating finite amplitude
ion holes are robust under head-on collisions.We note that
the dynamics of elastically colliding small amplitude ion
holes is governed by the modified Korteweg–de Vries
equation [22], which admits some interesting integra-
bility properties [23] based on Painlevé analysis and
Baecklund transformation.

In order to investigate the time-dependent dynamics of
the ion holes as well as kinetic effects for the electrons,
we employ a newly developed code [24] which numeri-
cally solves the Vlasov-Poisson system of equations:
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where fj is the distribution function of the particle spe-
cies j (j equals e for electrons and i for ions), mj is the
mass, qe � �e, qi � e, e is the magnitude of the electron
charge, E is the electric field, and � is the electrostatic
potential. The initial conditions on fi are set to the
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Schamel distribution [1,6] for the free and trapped ions, which in the rest frame of the bulk plasma has the form
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FIG. 1 (color online). The distribution function for the ions
(left panels) and electrons (right panels) of two colliding ion
holes, before the collision at times t � 0!pi (upper panel) and
t � 35:9!pi (middle panel), and after the collision at t �
133!pi (lower panel).
where u0 is the speed of the ion hole and n0 is the
unperturbed ion (or electron) number density. Similar
to an earlier investigation [21], we use � � �1:0 and
the electron to ion temperature ratio Te=Ti � 10. The
special choice of the initial condition (3) is motivated
by the fact that it is also an exact solution of the ion
Vlasov equation for the case when the potential � �
��x� u0t�, and it describes in this case a steady-state
ion hole propagating with a constant speed u0 [1,6]. The
initial condition for the electron distribution function is
taken to be the Maxwell-Boltzmann distribution,
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The potential � for the initial conditions (3) and (4) is
obtained by inserting them into Eq. (2), which is then
integrated [6,21] to obtain the potential� as a function of
x; in practice, the integration of Eq. (2) is performed
numerically. The potential thus obtained is then inserted
into Eqs. (3) and (4) to obtain the ion and electron dis-
tribution functions.

The numerical solutions of the Vlasov-Poisson system
were performed by means of a Fourier transform method
[24]. We used 500 intervals in x space with the domain
�40 � x=rD � 40 with periodic boundary conditions,
where rD � VTe=!pe � �Te=4�n0e2�1=2 is the electron
Debye radius, VTe � �Te=me�

1=2 is the electron thermal
speed, and !pe � �4�n0e

2=me� is the electron plasma
frequency. We used 300 intervals in velocity space. The
electron and ion speed intervals were in the ranges
�15:7 � v=VTe � 15:7 and �0:118 � v=VTe � 0:118,
respectively. The time step �t  0:013!�1

pe was adapted
dynamically to maintain numerical stability. We used
mi=me � 1836. First, we investigate the process of two
colliding ion holes, as shown in Figs. 1–3. For the initial
conditions, we considered that the ion holes initially are
well separated in space, and that the interaction between
the ion holes is weak, so that the solutions for the single
ion holes can be matched in space to form an initial
condition for the case with two ion holes. Figure 1 dis-
plays the features of the ion and electron distribution
functions for two colliding ion holes, where initially
(upper panels) the left ion hole propagates with the speed
u0 � 0:9VTi and the right ion hole is standing. The ion and
electron distribution functions associated with the ion
holes are shown before collision at times t � 0!�1

pi (upper
panels) and t � 35:9!�1

pi (middle panels), and after colli-
sion at time t � 133!�1

pi (lower panels). Figure 1 exhibits
that the ion holes undergo collisions without being de-
stroyed; thus they are robust structures. As can be seen in
095006-2
the right panels of Fig. 1, the electrons have a strongly
non-Maxwellian, flattop distribution in the region be-
tween the ion holes after collision has taken place. We
have plotted the velocity distribution function against
v=VTe in Fig. 2 at x � 8:0rD. We see that the initial
Maxwellian distribution (the upper panel) changes to a
distribution with beams at v  �0:6VTe (the middle
panel) slightly before collision, and to a flattop distribu-
tion with two maxima after collision (the lower panel).
The reason for this phenomenon is that the two ion holes
are associated with negative electrostatic potentials, and
the electrons entering the region between the ion holes
after collision must have a large enough kinetic energy to
cross the potential barriers that are set up by the ion holes.
095006-2
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FIG. 2. The electron velocity distribution at x � 8rD, for t �
0!�1

pi (upper panel), t � 35:9!�1
pi (middle panel), and t �

133!�1
pi (lower panel).
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Therefore, the region between the ion holes becomes
excavated of low-energy electrons. On the other hand,
we also observed that, before collision, the low-energy
population of electrons was compressed between the ion
holes (see the middle right panel of Fig. 1) and released
during collision; these electrons were then accelerated to
form the beams of electrons (see the middle panel of
Fig. 2) which escape the ion holes. The energy of the
electron beams was then released in a beam-plasma in-
stability triggering Langmuir waves; see Fig. 3 (the left
panel) where the electric field at x � 8:0rD is plotted as a
function of !pit. High-frequency Langmuir oscillations
are beginning to be excited at time t  10!�1

pi . The large-
amplitude bipolar electric fields of the ion hole appear as
it crosses x � 8:0rD at time t  50–80!�1

pi . By examin-
ing the frequency spectrum of the electric field (the right
panel), we notice that the Langmuir oscillations have
frequency components which are slightly upshifted com-
pared to the electron plasma frequency, and which can be
attributed to waves with different wavelengths having
frequencies higher than the plasma frequency according
to the dispersion relation of Langmuir waves. We also
have a slightly downshifted frequency band around
!=!pe � 0:9, which we attribute to Langmuir waves
trapped in an ion hole, as described below.
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FIG. 3. The electric field at x � 8:0rD as a function of !pit
(left panel) and the power spectrum of the electric field as a
function of !=!pe (right panel).
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In order to describe the trapping of Langmuir waves in
an ion hole, we have performed a new set of simulations
to study the time dependence of trapped Langmuir wave
electric fields. The results are displayed in Fig. 4. In these
simulations, the electron density is initially perturbed so
that Langmuir waves are excited around the ion hole
centered at x=rD � 0. We examine an ion hole with
zero speed (the left panel) and an ion hole having the
speed u0 � 0:9VTi (the right panel). Figure 4 shows that
Langmuir waves are trapped in the ion hole, with a
maximum wave amplitude at x=rD � 0. We find that the
trapped Langmuir waves are oscillating with a real fre-
quency slightly lower than the electron plasma frequency,
!r=!pe  0:93 for the standing ion hole case and
!r=!pe  0:98 for the moving ion hole case with u0 �
0:9VTi . A previous theoretical investigation [21] revealed
that the trapping of Langmuir waves in ion holes, with a
Maxwell-Boltzmann distributed electrons, correspond-
ing to the � � 1 case in Ref. [6] (a flattop distribution
would correspond to the � � 0 case in Ref. [6]), can be
described by a linear eigenvalue problem in the dimen-
sionless form 3d2W=d�2 � 	1� exp���� �  
W � 0 for
the normalized (by
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field envelope W. Here  is the eigenvalue, � is the
normalized (by Ti=e) electrostatic potential associated
with the ion hole, � is the normalized (by the electron
Debye radius) spatial variable, and � � Ti=Te. Using the
numerical values on the eigenvalue (the frequency shift)  
presented in Ref. [21], we obtain the theoretical values for
! which are displayed in Table I, and which follow the
relation !=!pe � 1�  =2� �u0=VTe�

2=6. We found that
the trapped Langmuir waves were associated with a real
frequency slightly lower than the electron plasma fre-
quency; i.e., !r=!pe  0:905 for the standing hole case
and !r=!pe  0:977 for the moving hole case with u0 �
0:9VTi. These are consistent with the numerically ob-
tained values; see Table I. For the standing hole case,
the Langmuir waves are strongly Landau damped, with a
damping rate !  0:03!pe , which is an effect not covered
FIG. 4 (color online). Normalized Langmuir wave electric
field E=


















4�n0Ti

p
(the bipolar electric field has been removed

from the data) as a function of the normalized space x=rD and
time !pet. The Langmuir wave is trapped in the ion hole which
is initially centered at x=rD � 0, and moving with the speed
u0 � 0VTi (left panel) and u0 � 0:9VTi (right panel).
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TABLE I. Normalized frequency shifts  and eigenfrequencies !=!pe for trapped small-amplitude Langmuir waves inside ion
holes propagating with different speeds u0. Theoretical values obtained from Ref. [21] (middle columns) and numerically obtained
values (right columns).

Ion hole speed Theoretical eigenfrequencies Numerically obtained eigenfrequencies, ! � !r � i!

u0 � 0:0Vti  � 0:0463 !=!pe � 0:905 !r=!pe � 0:93 !=!pe � 0:03
u0 � 0:9Vti  � 0:1906 !=!pe � 0:977 !r=!pe � 0:98 !=!pe � 0:00
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by our theoretical model [21] which is based on the
electron hydrodynamic model for the Langmuir wave
packets. In the moving ion hole case, the damping is
significantly weaker than in the standing hole case.
This can be understood in that the frequency shift is
smaller for the moving ion hole case, making the scale
length larger for the Langmuir wave envelope, resulting
in a smaller Landau damping; some distance away from
the ion hole density minimum, the potential � vanishes,
and there the Langmuir wave envelope decreases expo-
nentially with � with the scale length
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leads to a larger length scale, resulting in a weaker
Landau damping. The theoretical investigation [21] also
reveals that large-amplitude trapped Langmuir waves can
modify the ion hole, which then becomes wider and
deeper. Physically, the broadening of the ion hole and
the enhancement of negative ambipolar potential occur
because the ponderomotive force of the Langmuir waves
locally expels electrons, which pull ions along to main-
tain the local charge neutrality. The deficit of the ions in
plasmas, in turn, produces more negative potential within
the ion hole that is now widened and enlarged to trap the
localized Langmuir wave electric field envelope.

In summary, we have used a newly developed Vlasov
code to investigate the dynamics of two counterpropa-
gating colliding ion holes, as well as the trapping of
Langmuir waves in an ion hole. Our Vlasov code, which
solves the Vlasov-Poisson equations in a self-consistent
manner, covers the essential physics of charged particle
trapping in a large-amplitude electrostatic potential,
Landau damping and electron acceleration by the local-
ized electrostatic potentials. Hence, it is capable of de-
scribing the scenario of phase space vortices and
localized electric field structures which cannot be
handled by means of the two fluid model [22,23]. We
found that counterpropagating large-amplitude colliding
ion holes are quite robust, and that during their collisions
we observe the generation of nonthermal Langmuir waves
on account of a two-stream instability involving acceler-
ated electron streams that are created by the strong
electrostatic potential of ion holes. Our simulation results
also show that a large-amplitude ion hole can trap
Langmuir waves with a frequency downshift, and is
accompanied by a large bipolar electric field and a large
095006-4
negative potential drop in plasmas. In conclusion, we are
hoping that forthcoming observations from the FAST [25]
and CLUSTER [26] spacecraft missions should be able to
verify the predictions of our computer simulations, which
lend support to our theoretical model [21] of trapping
Langmuir waves in a large-amplitude ion hole.
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