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Controlled Hopf Bifurcation of a Storage-Ring Free-Electron Laser
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Local bifurcation control is a topic of fundamental importance in the field of nonlinear dynamical
systems. We discuss an original example within the context of storage-ring free-electron laser physics
by presenting a new model that enables analytical insight into the system dynamics. The transition
between the stable and the unstable regimes, depending on the temporal overlapping between the light
stored in the optical cavity and the electrons circulating into the ring, is found to be a Hopf bifurcation.
A feedback procedure is implemented and shown to provide an effective stabilization of the unstable
steady state.
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intensity, yn, is updated at each pass, n, inside the optical
cavity according to

old, �c. This model represents the starting point of our
analysis.
Transition from stability to chaos is a common char-
acteristic of many physical and biological systems [1,2].
Within this context, local bifurcation control is a topic of
paramount importance especially for those systems in
which stability is a crucial issue. This is, for example, the
case for conventional and nonconventional light sources,
such as storage-ring free-electron lasers (SRFELs), com-
monly employed in various scientific applications [3]. In a
SRFEL [4], the physical mechanism responsible for light
emission and amplification is the interaction between a
relativistic electron beam and the magnetostatic periodic
field of an undulator. Because of the effect of the magnetic
field, the electrons emit synchrotron radiation, known as
spontaneous emission. The light produced by the electron
beam is stored in an optical cavity and amplified during
successive turns of the particles in the ring. A given
temporal detuning, i.e., a difference between the electron-
beam revolution period and the round-trip of the photons
inside the optical cavity, leads to a cumulative delay
between the electrons and the laser pulses: the laser in-
tensity may then appear as a ‘‘continuous wave (cw)’’ (for
a weak or strong detuning) or show a stable pulsed be-
havior (for an intermediate detuning amount) [5,6]. The
achievement of a large and stable ‘‘cw’’ zone is a crucial
issue, of fundamental importance for experimental appli-
cations. In this Letter, we characterize the transition
between stable the unstable regimes as a Hopf bifurca-
tion. This result allows one to establish a formal bridge
with the field of conventional lasers and to adopt the
universal techniques of control theory to enlarge the
stable signal region. We develop this idea by introducing
a new model which reveals to be particularly suitable for
analytic investigations. The longitudinal dynamics of a
SRFEL can be described by a system of rate equations
accounting for the coupled evolution of the electromag-
netic field and of the longitudinal parameters of the
electron bunch [7,8]. The temporal profile of the laser
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yn�1��� � R2yn��� ���1� gn���� � is���; (1)

where � is the temporal position of the electron bunch
distribution with respect to the centroid; R is the mirror
reflectivity; the detuning parameter � is the difference
between the electrons’ revolution period (divided by the
number of bunches) and the period of the photons inside
the cavity; is��� accounts for the profile of the sponta-
neous emission of the optical klystron [9]. Assuming that
the saturation is achieved when the peak gain is equal to
the cavity losses, P, the FEL gain gn��� is given by [7,8]
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where gi and �0 are the initial (laser-off) peak gain and
beam energy spread, �n and ��;n are the energy spread
and the bunch length after the nth light-electron beam
interaction, and � � �2

e � �2
0. Note that Eq. (2) refers to

the case of SRFELs implemented on an optical klystron.
The evolution of the laser-induced electron-beam energy
spread is governed by the following equation:
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Here �e is the equilibrium value (i.e., that reached at the
laser saturation) of the energy spread at the perfect tun-
ing, and �T is the bouncing period of the laser inside the
optical cavity; In �

R
1
�1 yn��� d� is the laser intensity

normalized to its equilibrium value (i.e., the saturation
value for � � 0), and �s stands for the characteristic time
of the damped oscillation of electrons in their longitu-
dinal phase space. Equations (1)–(3) are shown to repro-
duce quantitatively the experimental results [8]. In
particular, the laser intensity displays a stable ‘‘cw’’
behavior for a small amount of detuning, while a pulsed
regime is found for � larger than a certain critical thresh-
2004 The American Physical Society 094801-1



Laser intensity

Laser intensity

Electrons' energy spread

Electrons' energy spread

dI
dt

I

dI
dt

I

d
d t
σ

d
d t
σ

σ

σ

FIG. 1 (color online). Phase-space portraits. Left column: _II is
plotted versus I. Right column: _�� versus �. The top panels refer
to � � 0:1 fs< �c, the bottom ones to � � 1:3 fs > �c.
Simulations have been performed using the case of the
SuperACO FEL as reference. The values of the relevant
parameters are �T � 120 ns, �s � 8:5 ms, �0 � 5	 10�4,
�e=�0 � 1:5, � � 14 kHz, gi � 2%, P � 0:8%, and Is �
1:4	 10�8.
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Equation (1) characterizes the evolution of the statisti-
cal parameters of the laser distribution: By assuming a
specific form for the profile, it is in principle possible to
make explicit the evolution of each quantity. For this
purpose, we put forward the assumption of a Gaussian
laser profile and compute the first three moments. The
details of the calculations are given elsewhere [10]. In
addition, it is shown that, for � spanning the central ‘‘cw’’
zone, the quantities ��l;n=��;n�

2 and ���n � ��=��;n�
2 are

small. Hence, a Taylor series expansion is performed and
second order terms neglected. Finally, by approximating
finite differences with differentials, the following con-
tinuous system is found:8>>>>>><
>>>>>>:
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Here � represents the oscillation frequency of the elec-
trons in their longitudinal phase space and �, the momen-
tum compaction factor, is a characteristic parameter of
the storage ring. Note the redefinition of � which is from
here on normalized to �0. Although in approximate form,
system (4) still captures the main features of the longitu-
dinal SRFEL dynamics. In particular, the transition from
the ‘‘cw’’ regime to the unstable (pulsed) steady state
occurs for a temporal detuning which is close to the one
found in the framework of the exact formulation, hence to
the experimental value. However, system (4) fails in
reproducing the correct behavior when the transition to
the lateral ‘‘cw’’ zone is approached. In Fig. 1, phase-
space portraits for both the laser intensity and the beam
energy spread are plotted for different values of �. Limit
cycles are observed when � > �c. For smaller values
of �, the variables converge asymptotically to a stable
fixed point. The latter can be analytically characterized,
thus allowing one to relate the electron-beam energy
spread, intensity, centroid position, and rms value of the
laser distribution, to the light-electron beam detuning.
Through a stability analysis, it is also possible to deter-
mine the threshold value �c. To our knowledge, this study
represents the first attempt to fully characterize the de-
tuned SRFEL dynamics.

The fixed points �I; �; �; �l� are found by imposing
�dI�=�dt� � �d��=�dt� � �d��=�dt� � �d�l�=�dt� � 0 in
(4), and solving the corresponding system. Assuming
from here on that � > 0, then the scenario for � < 0 is
094801-2
completely equivalent. After some algebraic calculations,
the following relations are found:
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These relations link the equilibrium values of I; �; �l to
�. The quantity � is found from the following implicit
equation:

gi
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where �l and � are, respectively, given by (9) and (8). For
any given value of the detuning �, Eq. (11) can be solved
numerically, by using a standard bisection method. The
estimates of � are then inserted in Eqs. (7)–(9), to
compute the corresponding values of I; �; �l. Results of
the calculations (solid line) and direct numerical simula-
tions using the system (4) (symbols) are compared in
Fig. 2, displaying remarkably good agreement. It is worth
094801-2
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FIG. 2 (color online). The fixed points are plotted as a func-
tion of the detuning parameter �. Top left panel: Normalized
laser intensity. Top right panel: Normalized electron-beam
energy spread. Bottom left panel: Laser centroid. Bottom right
panel: rms value of the laser distribution. Symbols refer to the
simulations, while the solid line stands for the analytic calcu-
lation. The list of parameters is enclosed in the caption of Fig. 1.

TABLE I. Theoretical widths of the laser pulse compared to
experimental values for the case of the SuperACO and
ELETTRA FELs. The experimental setting for the case of
SuperACO (operated at a beam energy of 800 MeV and at a
laser wavelength of 350 nm) is that specified in the caption of
Fig. 1. The analogous parameters for ELETTRA (operated at a
beam energy of 900 MeVand at a laser wavelength of 250 nm)
are the following: �T � 216 ns, �s � 87 ms, �0 � 1	 10�3,
�e=�0 � 1:5, � � 16 kHz, gi � 15%, P � 7%, Is �
4:3	 10�7.

SuperACO ELETTRA

�l (ps) 5 2
(�l�sm (ps) 3 1

Experimental values (ps) 10
 2 5
 2

0 0.4 0.8 1.2 1.6
 ε (fs)

-8

-6

-4

-2

0

2

R
ea

l P
ar

ts
 

10-5x

FIG. 3 (color online). Real part of the eigenvalues of the
Jacobian matrix associated with the system (4) as a function
of the detuning parameter �. The solid line refers to the
complex conjugate eigenvalues. The circle represents the tran-
sition from the stable to the pulsed regime, i.e., the Hopf
bifurcation.
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stressing that, by means of a perturbative analysis, a
closed analytical expression for � as a function of � is
also found. The details of the quite cumbersome calcu-
lations are given elsewhere [10].

As a validation of the preceding analysis, we consider
the case of perfect tuning, i.e., � � 0, and compare our
estimate for the laser-induced energy spread �l to the
value ��l�sm, derived in the context of the widely used
super-modes approach [11]. Both theoretical predictions
are then compared to experiments performed on the
SuperACO and ELETTRA FELs. Results are given in
Table I: The improvement of the calculation based on
Eq. (9) is clearly shown. The results of Table I indicate
that both �l and ��l�sm are smaller than the experimental
values. This is probably due to the fact that the models
neglect the effect of the microwave instability [12] re-
sulting from the electron-beam interaction with the ring
environment (e.g., the metallic wall of the vacuum cham-
ber). In the case of ELETTRA, the situation is compli-
cated by the presence of a ‘‘kicklike’’ instability (having
a characteristic frequency of 50 Hz) which periodically
switches off the laser preventing the attainment of a
stable ‘‘cw’’ regime [13].

The stability of the fixed point �I���; ����; ����; �l����
can be determined by studying the eigenvalues of the
Jacobian matrix associated with the system (4). The real
part of the eigenvalues as a function of � is shown in
Fig. 3. The system is by definition stable when all the real
parts are negative. The transition to an unstable regime
occurs when at least one of them becomes positive. In
general, the loss of stability takes place according to
different modalities. Consider the case of a Jacobian
matrix with a pair of complex conjugate eigenvalues
094801-3
and assume the real parts of all the eigenvalues to be
negative. A Hopf bifurcation occurs when the real part of
the two complex eigenvalues becomes positive, provided
the other keep their signs unchanged [14]. This situation is
clearly displayed in Fig. 3, thus allowing one to conclude
that the transition between the ‘‘cw’’ and the pulsed
regime in a SRFEL is a Hopf bifurcation. The critical
detuning, �c, can be calculated (open circle in Fig. 3) and
displays good agreement with both the simulated data and
the experimental value. A closed relation for �c is also
found [10], by making use of the analytic expressions for
the fixed points.

Having characterized the transition from the stable to
the unstable steady state in terms of Hopf bifurcation
opens up interesting perspectives to stabilize the signal
and dramatically improve the system performance. In
order to maintain the laser-electron beam synchronism
094801-3
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FIG. 4. Behavior of the FEL (normalized) intensity in the
absence (upper panel) and in the presence (lower panel) of the
derivative control system. The simulations refer to the case of
SuperACO (see caption of Fig. 1 for the list of parameters).
Here �0 � 1:3 fs > �c. The stabilization has been achieved
using � � 6	 10�3. Here, �c ’ 5	 10�4.
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and avoid the migration towards one of the unstable
pulsed zones of the detuning curve, existing second-
generation SRFELs, such as SuperACO and UVSOR
[15,16], have implemented dedicated control systems.
The idea is to readjust periodically the radiofrequency,
thus dynamically confining the laser in the central ‘‘cw’’
zone. Even though generally suitable for second-
generation SRFELs, these systems are inappropriate for
more recent devices, such as ELETTRA and DUKE. The
latters are indeed characterized by a much narrower
region of stable signal only occasionally experimentally
observed [13], making a priori impossible the pursuit of
the former strategy. On the contrary, the approach dis-
cussed here exploits a universal property of SRFELs,
thus allowing one to overcome the limitations of other
schemes. The procedure consists of introducing a specific
self-controlled (closed loop) feedback to suppress locally
the Hopf bifurcation and enlarge the zone of stable signal.
This is achieved by replacing the constant detuning with
the time-dependent quantity [17]:

��t� � �0 � ��T _II; (12)

which is added to system (4). Here �0 is assumed to be
larger that �c: When the control is switched off, i.e.,
� � 0, the laser is unstable and displays periodic oscil-
lations. For � larger than a certain threshold, �c, the
oscillations are damped and the laser behaves as if it
were in the ‘‘cw’’ region. Note that, as soon as saturation
is reached, _II � 0 and, thus, the stable regime is main-
tained asymptotically for � � �0 > �c, i.e., well inside
the former unstable zone. The results of the simulations
are represented in Fig. 4.

This new theoretical insight sets the ground for experi-
mental tests [10]. In this respect, a significant and repro-
094801-4
ducible extension of the stable ‘‘cw’’ region using this
technique has been recently achieved at SuperACO [18].
This result fully confirms our theoretical predictions.

In conclusion, in this Letter we propose a new approxi-
mate model of a SRFEL. This formulation enables a deep
analytical insight into the system dynamics, allowing one
to derive the explicit dependence of the main laser pa-
rameters on the temporal detuning. Results are fully con-
firmed by numerical simulations and show satisfactory
agreement with available experimental data. Further, the
transition between the stable and unstable regimes is
found to be a Hopf bifurcation, and the critical detuning
�c is calculated explicitly. Finally, we introduced in the
model a derivative feedback that is shown to stabilize the
laser intensity well beyond the threshold �c. Success-
ful experiments carried out at SuperACO confirmed our
predictions. Preliminary experiments carried out at
ELETTRA have also given encouraging results.
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