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Effects of Forcing in Three-Dimensional Turbulent Flows
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We present the results of a numerical investigation of three-dimensional homogeneous and isotropic
turbulence, stirred by a random forcing with a power-law spectrum, Ef�k� � k3�y. Numerical
simulations are performed at different resolutions up to 5123. We show that at varying the spectrum
slope y, small-scale turbulent fluctuations change from a forcing independent to a forcing dominated
statistics. We argue that the critical value separating the two behaviors, in three dimensions, is yc � 4.
When the statistics is forcing dominated, for y < yc, we find dimensional scaling, i.e., intermittency is
vanishingly small. On the other hand, for y > yc, we find the same anomalous scaling measured in flows
forced only at large scales. We connect these results with the issue of universality in turbulent flows.
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Here Pij�k� is the projector assuring incompressibility
ing in the forcing dominated case y� 0? Let us suppose,
for example, that there exists a finite yc, beyond which
The effects of both external forcing mechanisms and
boundary conditions on small-scale turbulent fluctua-
tions have been the subject of many theoretical, numeri-
cal, and experimental studies [1,2]. The 1941 theory of
Kolmogorov [1] is based on the assumption of local
isotropy and homogeneity, that is, any turbulent flow,
independently on the injection mechanism, recovers uni-
versal statistical properties, for scales small enough (and
far from the boundaries). Indeed, experiments and nu-
merical simulations give strong indications that Eulerian
isotropic/anisotropic small-scale velocity statistics are
pretty independent of the large-scale forcing mecha-
nisms [3–6]. Still, we lack a firm understanding for these
evidences. Here many of the powerful tools developed to
discuss similar problems in systems at statistical equilib-
rium are not applicable. For that reason, understanding
universality in Navier-Stokes equations may have impor-
tant feedback on a broader class of out-of-equilibrium
systems. From the theoretical point of view, precious
hints arise from linear problems, such as passive scalar
or passively advected magnetic fields. For the class of
Kraichnan models, anomalous scaling has been shown to
be associated to statistically stationary solutions of the
unforced equations for correlation functions [7]. Scaling
exponents are consequently universal with respect to the
injection mechanisms. Concerning nonlinear problems,
such as the Navier-Stokes case, analytical results have
been often pursued by means of the renormalization
group (RG) [8,9]. In the RG framework, turbulence is
stirred at all scales by a self-similar Gaussian field, with
zero mean and white noise in time. The two-point corre-
lation function in Fourier space is given by

hfi�k; t�fj�k0; t0�i / k4�d�yPij�k���k
 k0���t� t0�: (1)
0031-9007=04=92(9)=094503(4)$22.50 
and d is the spatial dimension (always assumed to be
d � 3 hereafter). The influence of the stirring mechanism
at small scales is governed by the value of the slope y.
We go from a situation when the forcing has a strong input
at all scales, y� 0 originally investigated in [8], to a
quasi-large-scale forcing when y ! 1. Renormalization
group calculations, based on a y expansion, predict a
power-law energy spectrum E�k� � k1�2y=3 in the domain
� 
 k�1 
 L, where � is the viscous scale of the system,
and for y 
 1. Notice that the Kolmogorov value E�k� �
k�5=3, describing experimental turbulent flows stirred by
a large-scale forcing, is obtained for y � 4, i.e., quite far
from the perturbative region where the RG calculations
are under control. The Kolmogorov spectrum can be
obtained, however, by means of a simple dimensional
analysis, still within the same framework [10]. Exten-
sion of the RG formalism to finite y values, up to y � 4,
have been attempted with a different kind of approxima-
tion [11,12] although in a range where convergence of the
RG expansion is not granted anymore [13]. As for the
numerical simulations, in [14] the problem has been in-
vestigated for various y values, and it has been shown
that, for y � 4, results are in good agreement with the
picture of large-scale forced turbulence, while for y < 4
the situation becomes less clear. However, the low nu-
merical resolution used in [14] makes these results far
from being conclusive. A similar study has also been
performed in the case of shell models for turbulence [15].

Beside the issue connected to the RG approach, there
exists a whole set of interesting questions concerning
turbulent flows with a power-law forcing. To what extent
are small-scale fluctuations sensitive to the injection
mechanism? Does there exist a critical value yc separat-
ing different regimes? Can we observe anomalous scal-
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small-scale statistics is forcing independent: this would
rule out any attempt to control intermittency analytically,
by means of a perturbative approach which starts from
forcing dominated turbulent solutions at y 
 yc.

Hints on the problem can also come from the study of
the one-dimensional Burgers equation in presence of a
power-law forcing. In [16], a numerical study was pre-
sented showing that there is a critical value of the forcing
slope, such that the velocity field passes from the usual
bifractal statistics (observed in large-scale forced Burgers
flows), to a statistics affected by the forcing. Surprisingly,
also in the forcing dominated regime, a nontrivial (multi-
fractal?) scaling was observed in [16]. A rigorous under-
standing of the mechanism leading to this result is,
however, still missing: we will come back to this point
later on, after having presented our results.

In the sequel, we address the problem of the small-scale
statistical properties of three-dimensional turbulent flows
at varying parameter y. We show that at crossing yc � 4
there exist two regimes for the velocity field statistics
with well defined and different scaling properties. At
difference from what was shown in [14], we study the
behavior of the whole velocity probability density func-
tion (PDF) at changing the scale for y < yc, showing that
in this regime velocity fluctuations are Gaussian, i.e.,
there is no leading anomalous contribution. This is far
from being trivial because for y � 0 (y � 3:5 here) RG
calculations are well beyond their range of validity. Only
direct numerical simulations can make firm quantitative
statements. Furthermore, in the range y > yc we find that
the velocity PDF is intermittent, anomalous scaling being
in good quantitative agreement with that found with
large-scale forcing. This contradicts what was found in
[14] where, probably because of finite Reynolds effects
due to low resolution, different scaling properties were
claimed with respect to the usual large-scale Navier-
Stokes system. Indeed, subleading contributions are un-
avoidable when a power-law forcing is present: only high
resolution can help to disentangle them.

We solved the Navier-Stokes equations with a second-
order hyperviscous dissipative term / ��2, which yields a
larger inertial range without affecting scaling properties
[17]. Temporal integration has been carried over for about
20–30 large-eddy turnover times. We performed various
experiments, at resolutions 1283, 2563, and 5123, corre-
sponding to a maximum Taylor’s Reynolds number equal
to Re� � 220 for the 5123 run. As for the stirring force,
we specialized in the two following cases, one for each
regime: the first with y � 3:5< yc, the second with y �
6 > yc. The range of the forcing, in Fourier space, ex-
tends down to the maximum resolved wave number. As
we are always confined in a finite box, we neglect here
possible subtle behaviors due to infrared divergences in
the injection mechanism. We also show results obtained
with an analytical large-scale forcing, i.e., a forcing with
support on only a few wave numbers. This is the equiva-
lent to y ! 1, in previous notation.
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We start considering what happens to the system when
the slope of the forcing is changed. It is instructive to con-
sider the equation for the energy flux through the wave
number k: ��k� � ��k2

R
=�h�k � v̂v�q���v̂v�k� � v̂v�p��i 


h�k � v̂v�p���v̂v�k� � v̂v�q��i�dpdq, where the three wave vec-
tors satisfy k
 p
 q � 0, and the symbol = stands for
the imaginary part. Such an equation is equivalent to the
Kármán-Howarth equation in physical space; it states
that in a stationary, isotropic, and homogeneous flow,
the contribution to the energy flux ��k� due to the non-
linear terms balances the total energy input from the
injection mechanism (see [1]):

��k� �
Z
k0<jkj<k

<�hf�k�v��k�i�dk; (2)

where k0 � 1=L, the symbol < stands for the real part,
and where we have neglected dissipative effects. For the
special class of forcings (1), the right-hand side of (2) can
be further simplified to ��k� �

R
k0<jkj<khjf�k�j

2idk.
From (1) the forcing spectrum is Ef�k� � hjf�k; t�j2i �
k3�y. It follows that for y � 4, the energy flux is constant
in Fourier space for kL � 1 (up to logarithmic correc-
tions for y � 4). In other words, the energy injection is
dominated by the small wave-number region in the in-
tegral (2). In this case we expect to be very close to the
typical experimental situation of turbulence with a large-
scale, analytical forcing: energy is transferred downscale
via an intermittent cascade. Coherently, the third order
longitudinal structure function, S�3��r� � h��v�x
 r� �
v�x�� � r̂r�3i, follows a linear behavior in r as predicted
by the 4=5 law [1]. For y < 4, the energy flux no longer
saturates to a constant value as a function of k. The
integral in (2) now becomes ultraviolet dominated. The
direct input of energy from the forcing mechanism af-
fects inertial range statistics in a self-similar way, down
to the smallest scales where dissipative terms start to be
important. In this situation, we get for the energy flux
��k� � k4�y, with a constant prefactor which depends on
the ultraviolet cutoff. The corresponding scaling behavior
for the third order structure function is now given by
S�3��r� � ry�3.

What about higher order statistics? One is tempted to
guess that for y � 4 the fluctuations induced by the
injection mechanism are always subleading, anomalous
scaling being the result of the cascade mechanism driven
by the nonlinear terms of the equations of motion. If so,
for y > 4 we should fall in the same class of ‘‘universal-
ity’’ of turbulence generated with large-scale forcing, i.e.,
small-scale velocity fluctuations should be universal.
Therefore, as far as y > 4, longitudinal structure func-
tions should scale as:

Sn�r� � h��v�x
 r� � v�x�� � r̂r�ni � r�
�n�
1 : (3)

In (3), we have denoted with �n1 the scaling exponents
measured with an analytical, large-scale forcing.
094503-2



FIG. 1. Log-log plot of the compensated sixth-order struc-
ture function S�6��r�=r�. The two top curves are for y � 3:5 at
the two resolutions 2563 and 5123: they are compensated with
the dimensional scaling (4), i.e., with an exponent � �
� �6�y�3:5 � 1. The bottom curve refers to the case y � 6, at the
resolutions 2563, and is also compensated with the exponent for
the scaling (4), � � � �6�y�6 � 6. Clearly the matching with the
dimensional exponent is not the correct one in the case y � 6.
Inset: local slopes of the extended self-similarity (ESS) curve
[18], for S�6��r� vs S�3��r�, at varying r. Top curve refers to
the case y � 3:5, and the two bottom curves refer to the cases
y � 6 and y ! 1. The dimensional scaling would correspond
to the value 2.

TABLE I. Scaling exponents in ESS, of the curves S�n��r� vs
S�3��r�, extracted from the following numerical simulations:
y � 3:5, at resolution 2563 and 5123; y � 6, at resolution 2563;
y ! 1, at resolution 5123. The first row describes the dimen-
sional values: � �n�y =� �3�y � n=3.

� �n�y nn 1 2 4 5 6

yd 0:333 0:666 1:33 1:66 2:00
y � 3:5 0:34�1� 0:67�1� 1:31�2� 1:62�2� 1:93�3�
y � 6 0:36�1� 0:69�1� 1:28�2� 1:53�3� 1:75�4�
y ! 1 0:36�1� 0:69�1� 1:27�2� 1:52�3� 1:75�4�
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FIG. 2. PDF of the velocity increments, for y � 6:0, for three
separations: r1 � 34� and r2 � 74� in the inertial range and
r3 � 114� in the energy containing range.
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On the other hand, for y < 4, energy is directly injected
in the inertial range. Here a dimensional matching with
the forcing gives a scaling behavior which is always
leading with respect to that predicted in the y > 4 range
(3). We expect now that anomalous scaling disappears,
everything being dominated by the Gaussian energy input
at all scales. By the simple dimensional argument con-
necting the scaling of structure functions to that of the
external forcing, for the range y < 4 we have

S�n��r� � r�
�n�
y with � �n�y �

n
3
�y� 3�: (4)

In Fig. 1 we show the sixth order structure function,
S�6��r� for the two cases y � 3:5 and y � 6, compensated
with the dimensional prediction (4) given by the match-
ing with the forcing.

As it is clear, only for y � 3:5 do the statistics follow
the forcing injection obtaining a nice compensation. On
the other hand, for y � 6 the statistics is much closer to
that usually measured with an analytical large-scale forc-
ing. This is quantitatively confirmed by the inset in Fig. 1,
where we plot the logarithmic derivatives of S�6��r� vs
S�3��r�, for the two cases y � 3:5 and y � 6, together with
the results of the simulation with a large-scale, smooth
forcing corresponding to y ! 1. Here the local slopes for
y � 6 and y ! 1 fluctuate around the same value, com-
patible with those reported in literature [2,4], while the
local slope for y � 3:5 is different and tends to the ex-
pected dimensional value. Values of all scaling exponents
obtained in the simulations are summarized in Table I.
Let us notice that the measured exponents for the y � 3:5
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case are very close to the nonintermittent, dimensional
prediction. Only for high order moments (i.e., n � 6) is
there a small deviation from the expected value
� �6�=� �3� � 2. To quantify the level of intermittency at
changing the scale, we also plot the PDF of velocity
increments at different scales, normalized to have unit
variance. Figure 2 shows the PDFs, in the case y � 6, for
three different separations: r1 � 34� and r2 � 74� in the
inertial range and r3 � 114� in the energy containing
range. The three curves have larger tails than a Gaussian
distribution and have an intermittent behavior; i.e., they
cannot be superposed. In Fig. 3 we show the PDFs, for the
case y � 3:5, at the same separations �r1; r2; r3�. Now the
three curves are almost indistinguishable and show a
very good rescaling, a signature of the absence of inter-
mittent effects. Only for negative increments is a very
tiny discrepancy measured. It is hard to say whether this
is a robust effect or a spurious Reynolds dependent phe-
nomenon. We will come back to this issue later in the
conclusions.

A dramatic difference at crossing the y � yc value
is also observed in the energy dissipation statistics.
For both cases y � 3:5 and y � 6, we measured the
PDF of the coarse-grained energy dissipation "r�x� �
V�1
r

R
Vr�x�

"�x
 r�dr, where " is the rate of dissipation
for unit volume, and the volume Vr�x� is centered at x and
has characteristic length scale r 
 L. In Fig. 4 we com-
pare the PDFs P �"r� at the scale r � 8�. Here the results
094503-3



FIG. 3. PDF of the velocity increments, for y � 3:5. Scales
are the same as the previous figure: r1 � 34�, r2 � 74�, and
r3 � 114�.
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FIG. 4. PDF of the coarse-grained energy dissipation P �"r�,
for both y � 3:5 and y � 6:0, at the scale r � 8�.
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are even more impressive as the shape change is particu-
larly strong.

In this Letter, we have presented evidence that turbu-
lent small-scale fluctuations, in the presence of a direct
injection of energy at all scales, undergo a transition for
yc � 4. The first regime, for y > yc, is mainly forcing
independent: small-scale fluctuations develop anomalous
scaling in agreement with that observed in experiments
and/or numerics obtained with a large-scale forcing. This
is a stringent test of turbulence universality: even if
directly affected by the injection of energy, small-scale
fluctuations show a robust behavior.

Things change abruptly at the critical value of yc,
where the direct injection of energy becomes the domi-
nant effect in the inertial range. In this second regime,
corresponding to y < yc, small-scale fluctuations get
closer and closer to a Gaussian statistics and intermit-
tency disappears.

Before concluding, we discuss two possible mecha-
nisms which could partially disprove the last statement.
First, even when y < yc, we may imagine that the inter-
mittent energy cascade dominating the statistics for y >
yc might show up. For example, we may have that for high
order moments the forcing dominated solutions become
subleading with respect to those associated to the cascad-
ing mechanism. In such a case, the loss of rescaling in the
PDF’s tail in Fig. 2 may be due to the survival of these
rare anomalous fluctuations. Second, even more complex
is the scenario proposed in [16], where the possibility to
have a forcing dependent multiscaling statistics, when
y < yc, is conceived. This is not the case for the linear
Kraichnan models [7], where forcing dependent solutions
are always dimensionally scaling. The main difference is
that, in the Navier-Stokes problem, the hierarchy of equa-
tions for correlation functions is unclosed: one cannot
solve it for a single order independently of all the others.
In Navier-Stokes, being the low order moments always
forcing dominated for y < yc, one may observe some
forcing dependency also on high order fluctuations via
their coupling with low order correlation functions.
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