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Although deterministic chaos has been predicted to occur in the triply resonant optical para
oscillator (TROPO) 15 years ago, experimental evidence of chaotic behavior in this system ha
lacking so far, in marked contrast with most nonlinear systems, where chaos has been actively
and found. This situation is probably linked to the high sensitivity of the TROPO to perturba
which adversely affects stationary operation at high power. We report the experimental observa
this system of a burst of irregular behavior of duration80 �s. Although the system is highl
nonstationary over this time interval, a topological analysis allows us to extract a clear-cut sig
of deterministic chaos from a time series segment of only nine base cycles (3 �s). This result suggest
that nonstationarity is not necessarily an obstacle to the characterization of chaos.
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light based on parametric down-conversion of pumppump power of 3.5 W (i.e., 350 times above threshold),
It has become common knowledge that many n
linear systems obeying deterministic equations of m
tion can display seemingly erratic behavior. In the l
decades, deterministic chaos has been the subject o
tensive experimental investigation and has been obse
in a large variety of experimental systems (see, e.g.,
However, characterizing chaos is significantly more
manding than characterizing periodic behavior,
which measuring simple quantities such as amplitud
frequency over a short time interval is sufficient. Inde
most quantitative measures of chaos (e.g., fractal dim
sions or Lyapunov exponents) rely on constructing
approximation of the natural measure on a strange at
tor, which requires observing the system for at least a
hundreds of cycles at fixed control parameters [2,3].

Thus, it is extremely difficult to assess determinis
chaos in a system that experiences parameter drifts
time scale comparable to the mean dynamical period
that stationarity cannot be assumed. In particular, th
the case when studying a subsystem that cannot be
sidered as isolated from its environment, a situation
frequently occurs in biological systems. Yet, it is oft
desirable to understand the behavior of a small part
complex system before unraveling its global dynamics
natural question then is can we infer the existence
an underlying chaotic dynamics from a very short, n
stationary, time series? In this Letter, we present a ca
which this question can be answered positively: by ap
ing topological tools [4–6] to a burst of irregular beha
ior recorded in a triply resonant optical paramet
oscillator (TROPO) subject to thermal effects, we extr
a clear-cut signature of deterministic chaos from an
tremely short time series segment of only nine b
cycles.

Optical parametric oscillators are sources of cohe
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photons into pairs of subharmonic photons in a n
linear optical crystal. This effect is enhanced by enc
ing the crystal inside a cavity so as to build an oscilla
When the cavity is resonant for the three waves,
threshold for infrared generation can be as low as a
mW. As lasers, TROPOs are based on a nonlinear in
action and are naturally susceptible to instabilities
chaos. Accordingly, chaotic behavior was identified i
simple TROPO model 15 years ago [7]. Surprising
this theoretical prediction has so far not been confirm
experimentally.

Instabilities and chaos are expected to occur in
TROPO at high power, where optical nonlinearities
emphasized. However, high energy densities in the cry
induce other effects, in particular, thermal effects. It w
recently shown that the TROPO can be subject to ther
optical instabilities where the cavity length is no longe
fixed parameter but behaves as a slow variable couple
the optical variables [8]. This gives rise to relaxati
oscillations [8,9], as well as to a variety of bursti
regimes [10] when these slow oscillations combine w
fast oscillations resulting from the interaction of tran
verse modes [11]. The coexistence of two different ti
scales then makes it difficult to characterize the dyna
ics, especially in the case of irregular regimes.

The TROPO used in the experiment is as describe
Refs. [8,9,11]. It features a 15-mm-long KTP (potassi
titanyl phosphate) crystal cut for type-II phase matchi
enclosed inside a 63-mm-long cavity delimited by t
mirrors with a radius of curvature of 50 mm. Cavi
length is not actively stabilized. The cavity is reson
at 532 nm, the wavelength of the frequency-doub
Nd:YVO4 pump laser, and at 1064 nm, near which t
infrared fields are generated. Parametric threshol
reached at pump powers of the order of 10 mW. A
2004 The American Physical Society 094101-1
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have observed in the output signal intensity wavefor
more complex than the periodic instabilities reported
far [8–12]. The time series that we analyze in this pape
shown in Fig. 1. Because the raw recording had limi
vertical resolution, it has been processed through
acausal low pass filter with a cutoff frequency
7 MHz. Acausal filtering of the time series has not be
shown to introduce artifacts in subsequent phase-s
reconstructions [13]. Betweent � 790 �s and t �
870 �s, Fig. 1(a) displays a burst of irregular behav
inside a long interval of quasisinusoidal periodic behav
of frequency approximately 3 MHz. The rapid variation
the periodic waveform with time shows clearly that t
system is highly nonstationary. The drift occurs on a ti
scale consistent with previous reports of thermal effe
in this system [8,9].
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FIG. 1. (a) Signal intensity vs time; (b)–(e) consecutive ex-
cerpts from the irregular burst occurring for t 2 �780; 875�.
The segment between t � 812:421 and t � 815:562 contains a
period-9 orbit used in the subsequent topological analysis.

094101-2
s

s

n

ce

r

s

The complex burst shown in detail in Figs. 1(b)–1(e
highly suggestive of deterministic chaos. Betweent �
790 �s and t � 805 �s, it begins by a progressive tran
sition from the base period-1 orbit to a period-2 or
This is a signature of a period-doubling bifurcation, t
first step of the most ubiquitous route to chaos. T
reverse bifurcation can be seen in Fig. 1(e). Moreo
the time series displays a number of sequences of al
periodic behavior, a hallmark of low-dimensional cha
[4,5]. In particular, the segment betweent � 830 �s and
t � 840 �s contains three periodic bursts of periods 3
and 1.

When chaotic behavior is suspected, a natural step
try to reconstruct a strange attractor in a phase s
using, e.g., the method of time delays [2–5]. In the pres
case, this procedure is questionable because the syst
not stationary. Indeed, the superposition of traject
segments corresponding to different values of con
parameters is expected to yield a blurred plot. Howe
a phase-plane plot of the time series of Figs. 1(b)–1(e
surprisingly similar to a Ro¨ssler-type chaotic attracto
(Fig. 2). This indicates that trajectories of our syst
change their shape relatively slowly as a control para
ter is varied.

Next, we choose a Poincare´ section (Fig. 2) and con
struct a first return map for it. A convenient choice is t
return map for the times of flightTn between thenth and
the �n� 1�th intersections with the section plane, whi
are relatively insensitive to noise. HowTn varies along
the time series is shown in Fig. 3(a). This plot clea
displays the bifurcation diagram of a system that und
goes a period-doubling cascade, explores a chaotic
followed by a period-3 periodic window, and then go
back. Note that the fraction of the diagram where co
plex behavior is observed is relatively small.

The plot �Tn; Tn�1� is shown in Fig. 3(b), where
folded structure similar to a one-dimensional map
easily be discerned. This suggests that the irreg
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FIG. 2. Phase-plane portrait �X�t�; X�t� 	��, with X�t� the
time series of Figs. 1(b)–1(e) and 	 � 55 ns. The vertical line
indicates the section plane used in the subsequent analysis.
Flow rotates clockwise around the hole in the middle.
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FIG. 3. (a) Poincaré section return times Tn vs intersection
number n. Return maps �Tn; Tn�1� (b) for n 2 �1; 250�; (c) for
n 2 �70; 105�.
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FIG. 4. (a) A period-9 closed orbit detected in the time series.
The open circle indicates its starting and final points. The inset
displays trajectory segments around these two points; (b) a
presentation of this orbit as an open braid, using the diagonal as
a Poincaré section.
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dynamics observed in the experiment is deterministic.
However, no quantitative information can be extracted
from Fig. 3(b) which is blurred by variations in control
parameters, as can be verified by plotting separately
graphs corresponding to different parts of the time series.
If we restrict ourselves to the first chaotic zone of Fig. 3
(i.e., for n 2 �70; 105�, or t 2 �806:8; 819:0�), the result-
ing plot is much closer to a one-dimensional map but
there are now too few points to rigorously assess the
presence of deterministic chaos, let alone to quantify it
[Fig. 3(c)].

Indeed, most characterization methods require that the
neighborhood of each point in phase space is sufficiently
populated to capture the local structure of the attractor.
Thus, they depend on the time series nonlocally in time:
nearest neighbors in phase space are usually located far
apart in the time series (long-term recurrence). This
makes these methods fragile with respect to variations
of control parameters along the time series. As we see
below, a topological analysis circumvents this problem by
extracting information from isolated time series seg-
ments, namely, those approaching a closed orbit (short-
term recurrence): we shall not only extract a signature of
an underlying chaotic dynamics in the fixed-parameter
system but also obtain lower bounds on its topological
entropy, a classical measure of chaos.

The time series of Fig. 1 displays many periodic events.
As with the period-3 orbit, many of them correspond to
stable periodic windows explored by the system as pa-
rameters are swept but some can also be found in zones of
irregular behavior. They then likely correspond to a close
encounter with one of the infinity of unstable periodic
orbits embedded in a chaotic attractor.

The topological analysis of chaos [4,5] proceeds by
characterizing the organization of periodic orbits, which
are associated with closed curves in phase space. In
dimension three, how these curves are intertwined can
094101-3
be studied using knot theory and branched manifolds
(‘‘ templates’’ ). This is because the knot invariants of
periodic orbits provide topological signatures of the
stretching and squeezing mechanisms organizing a
strange attractor [4,5]. A major advantage of topological
analysis is that each time series segment shadowing a
periodic orbit, stable or unstable, can be analyzed inde-
pendently of the others.

Although the time series of Figs. 1(b)–1(e) is very
short, we have detected several closed orbits in it. The cri-
terion was that the orbit should return to its initial con-
dition in the �Tn; Tn�1� plane with 3% accuracy. These
orbits are the period-1, period-2, period-4, and period-8
orbits of the period-doubling cascade, the period-3 orbit,
as well as four orbits of periods 6, 7, 9, and 10.

We have found that the braids associated with these
closed orbits can all be projected to a standard horseshoe
template [4,5], as the structure of the return map suggests.
More precisely, they have the same braid types as orbits 1,
01, 013, 013�01�2, 016, 011010111, �011�31, 011, and 015 of
the standard horseshoe template (ordered as in the time
series). Linking numbers were not computed as this
would require comparing different parts of the time
series. This observation suggests that although orbits
change their shape as control parameters vary along the
time series, their topological organization is not modi-
fied. Such a robustness would be extremely unlikely if the
irregular dynamics observed was not deterministic.

However, topological analysis can provide us with
stronger evidence. Indeed, we have found that two of the
closed orbits have a ‘‘ positive-entropy’’ braid type. One is
shown in Fig. 4. In a stationary system, how trajectories
are stretched and folded around such an orbit forces the
existence of an infinity of periodic orbits [6]. Thus,
positive-entropy orbits exist only in systems that have
experienced infinitely many bifurcations and are chaotic
in some region of parameter space [4–6,14,15]: a ‘‘ pretzel
knot’’ (i.e., a common type of positive-entropy orbit
094101-3
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having such a knot type) in a three-dimensional flow im-
plies chaos just as a period-3 orbit in a one-dimensional
map does. The presence of such an orbit in an experimen-
tal data set was first used as an indicator of chaos for the
Belousov-Zhabotinskii reaction [16]. Pretzel knots have
also been observed in laser experiments [17,18]. How
many orbits are forced by a given braid type is quantified
by its topological entropy, which is a lower bound on the
topological entropy of systems containing it [6].

Using the TRAINS program by Hall [19], we have com-
puted the topological entropy of the braid in Fig. 4(b) to
be hT � 0:377 057 > 0. Similarly, the period-10 orbit has
entropy hT � 0:473 404 > 0. If our system were station-
ary (as in Refs. [16–18]), the presence of such orbits
would unambiguously imply chaos and provide a lower
bound on topological entropy. However, the closed orbit
in Fig. 4 is not a true periodic orbit, since control pa-
rameters have different values at its starting and final
points.

Nevertheless, the following observation gives us con-
fidence that the observed braid type is actually present
in the unperturbed system. The inset of Fig. 4 shows
two trajectory segments fX�t�; t 2 �t0 
 	1; t0 � 	2�g and
fX�t�; t 2 �t0 � T 
 	1; t0 � T � 	2�g centered around the
starting point X�t0� and the ending point X�t0 � T� of the
closed orbit, with 	1 � 	2 � 350 ns being approximately
one orbital period. Although the two segments corre-
spond to the extreme values of the control parameter
along the closed orbit [Fig. 3(a) indicates that parameter
variation is monotonic for n 2 �86; 93�], we see that they
are almost superimposed on each other. This indicates
that the vector flow changes very little between t � t0 and
t � t0 � T. The separation between the two segments can
then be taken as an upper bound on the separation be-
tween the closed orbit observed and a periodic orbit of the
unperturbed system. As this separation is significantly
smaller than the separation between strands of the closed
orbit in Fig. 4(a), the unperturbed system (i.e., the
TROPO with fixed cavity length) must have a periodic
orbit with the braid type shown in Fig. 4(b). We can then
conclude that it exhibits deterministic chaos. Similarly,
perturbations due to noise have no influence if their
amplitude is small with respect to interstrand distance.

Our study shows that closed orbits with a positive-
entropy braid type can be exploited when the influ-
ence of parameter variation is small over one orbit period,
a modest requirement compared to other methods.
However, we expect this approach to be also applicable
to stronger nonstationarity. Generically, closed orbits of a
system with a swept parameter connect continuously to
periodic orbits of the unperturbed system as the sweeping
rate goes to zero, as is easily shown using the implicit
function theorem. If a positive-entropy closed orbit can be
shown not to change its braid type along the homotopy
path, then it provides a signature of chaos. Understanding
when braid type is preserved is difficult, but a preliminary
study of the logistic map with a swept parameter (where
094101-4
permutation of the periodic points is the counterpart of
braid type) suggests that this approach is quite robust.
Regarding applicability to higher-dimensional systems,
where knots and braids fall apart, we are currently devel-
oping alternate methods for computing the topological
entropy of a periodic orbit.

In conclusion, sophisticated topological methods
have allowed us to obtain the first experimental signature
of deterministic chaos in an optical parametric oscil-
lator using only a very short segment of a nonstationary
time series, which contained a positive-entropy orbit.
Moreover, the fact that two such orbits were detected in
less than 40 cycles indicates that these signatures of chaos
are extremely robust with respect to variation in control
parameters.
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