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Although deterministic chaos has been predicted to occur in the triply resonant optical parametric
oscillator (TROPO) 15 years ago, experimental evidence of chaotic behavior in this system has been
lacking so far, in marked contrast with most nonlinear systems, where chaos has been actively tracked
and found. This situation is probably linked to the high sensitivity of the TROPO to perturbations,
which adversely affects stationary operation at high power. We report the experimental observation in
this system of a burst of irregular behavior of durati®d us. Although the system is highly
nonstationary over this time interval, a topological analysis allows us to extract a clear-cut signature
of deterministic chaos from a time series segment of only nine base c§cleg.(This result suggests
that nonstationarity is not necessarily an obstacle to the characterization of chaos.
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It has become common knowledge that many nonphotons into pairs of subharmonic photons in a non-
linear systems obeying deterministic equations of molinear optical crystal. This effect is enhanced by enclos-
tion can display seemingly erratic behavior. In the lasting the crystal inside a cavity so as to build an oscillator.
decades, deterministic chaos has been the subject of inVhen the cavity is resonant for the three waves, the
tensive experimental investigation and has been observatireshold for infrared generation can be as low as a few
in a large variety of experimental systems (see, e.g., [1]mW. As lasers, TROPOs are based on a nonlinear inter-
However, characterizing chaos is significantly more deaction and are naturally susceptible to instabilities and
manding than characterizing periodic behavior, forchaos. Accordingly, chaotic behavior was identified in a
which measuring simple quantities such as amplitude osimple TROPO model 15 years ago [7]. Surprisingly,
frequency over a short time interval is sufficient. Indeed this theoretical prediction has so far not been confirmed
most quantitative measures of chaos (e.qg., fractal dimerexperimentally.
sions or Lyapunov exponents) rely on constructing an Instabilities and chaos are expected to occur in the
approximation of the natural measure on a strange attraGROPO at high power, where optical nonlinearities are
tor, which requires observing the system for at least a fevemphasized. However, high energy densities in the crystal
hundreds of cycles at fixed control parameters [2,3]. induce other effects, in particular, thermal effects. It was

Thus, it is extremely difficult to assess deterministicrecently shown that the TROPO can be subject to thermo-
chaos in a system that experiences parameter drifts onaptical instabilities where the cavity length is no longer a
time scale comparable to the mean dynamical period, sfixed parameter but behaves as a slow variable coupled to
that stationarity cannot be assumed. In particular, this ishe optical variables [8]. This gives rise to relaxation
the case when studying a subsystem that cannot be conscillations [8,9], as well as to a variety of bursting
sidered as isolated from its environment, a situation thategimes [10] when these slow oscillations combine with
frequently occurs in biological systems. Yet, it is oftenfast oscillations resulting from the interaction of trans-
desirable to understand the behavior of a small part of aerse modes [11]. The coexistence of two different time
complex system before unraveling its global dynamics. Ascales then makes it difficult to characterize the dynam-
natural question then is can we infer the existence oics, especially in the case of irregular regimes.
an underlying chaotic dynamics from a very short, non- The TROPO used in the experiment is as described in
stationary, time series? In this Letter, we present a case iRefs. [8,9,11]. It features a 15-mm-long KTP (potassium
which this question can be answered positively: by applytitanyl phosphate) crystal cut for type-1l phase matching,
ing topological tools [4—6] to a burst of irregular behav- enclosed inside a 63-mm-long cavity delimited by two
ior recorded in a triply resonant optical parametricmirrors with a radius of curvature of 50 mm. Cavity
oscillator (TROPO) subject to thermal effects, we extraclength is not actively stabilized. The cavity is resonant
a clear-cut signature of deterministic chaos from an exat 532 nm, the wavelength of the frequency-doubled
tremely short time series segment of only nine bas&Nd:YVO, pump laser, and at 1064 nm, near which two
cycles. infrared fields are generated. Parametric threshold is

Optical parametric oscillators are sources of coherenteached at pump powers of the order of 10 mW. At a
light based on parametric down-conversion of pumppump power of 3.5 W (i.e., 350 times above threshold), we
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have observed in the output signal intensity waveforms The complex burst shown in detail in Figs. 1(b)-1(e) is
more complex than the periodic instabilities reported sdiighly suggestive of deterministic chaos. Between
far [8—12]. The time series that we analyze in this paper i§90 wus andt = 805 us, it begins by a progressive tran-
shown in Fig. 1. Because the raw recording had limitedsition from the base period-1 orbit to a period-2 orbit.
vertical resolution, it has been processed through aithis is a signature of a period-doubling bifurcation, the
acausal low pass filter with a cutoff frequency offirst step of the most ubiquitous route to chaos. The
7 MHz. Acausal filtering of the time series has not beerreverse bifurcation can be seen in Fig. 1(e). Moreover,
shown to introduce artifacts in subsequent phase-spadbe time series displays a number of sequences of almost
reconstructions [13]. Betweenr =790 us and r=  periodic behavior, a hallmark of low-dimensional chaos
870 us, Fig. 1(a) displays a burst of irregular behavior [4,5]. In particular, the segment betwees 830 us and
inside a long interval of quasisinusoidal periodic behaviorr = 840 us contains three periodic bursts of periods 3, 2,
of frequency approximately 3 MHz. The rapid variation of and 1.
the periodic waveform with time shows clearly that the When chaotic behavior is suspected, a natural step is to
system is highly nonstationary. The drift occurs on a timetry to reconstruct a strange attractor in a phase space
scale consistent with previous reports of thermal effectsising, e.g., the method of time delays [2-5]. In the present
in this system [8,9]. case, this procedure is questionable because the system is
not stationary. Indeed, the superposition of trajectory
segments corresponding to different values of control

40 : : : @ parameters is expected to yield a blurred plot. However,
I % a phase-plane plot of the time series of Figs. 1(b)-1(e) is
surprisingly similar to a Rssler-type chaotic attractor

2or (Fig. 2). This indicates that trajectories of our system

0} 1 change their shape relatively slowly as a control parame-

‘ ‘ ‘ ter is varied.

700 750 800 850 900 Next, we choose a Poincasection (Fig. 2) and con-
Time (s) - . . . .

. ' ' ' ' (b) struct a first return map for it. A convenient choice is the

return map for the times of flight, between the:th and

2 the (n + 1)th intersections with the section plane, which

are relatively insensitive to noise. HoWy, varies along

the time series is shown in Fig. 3(a). This plot clearly

displays the bifurcation diagram of a system that under-

goes a period-doubling cascade, explores a chaotic zone

"] (© followed by a period-3 periodic window, and then goes

back. Note that the fraction of the diagram where com-

2] plex behavior is observed is relatively small.

The plot (T, T,+,) is shown in Fig. 3(b), where a
folded structure similar to a one-dimensional map can
easily be discerned. This suggests that the irregular
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FIG. 1 (&) Signa intensity vs time; (b)—(e) consecutive ex-  FIG. 2. Phase-plane portrait [X(z), X(r + 7)], with X(z) the

cerpts from the irregular burst occurring for ¢ € [780,875].  time series of Figs 1(b)-1(e) and = = 55 ns. The vertical line

The segment between r = 812.421 and t = 815.562 containsa  indicates the section plane used in the subsequent analysis
period-9 orbit used in the subsequent topological analysis Flow rotates clockwise around the hole in the middle.
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FIG. 3. (@) Poincaré section return times T, vs intersection

number n. Return maps (7, T,,+;) (b) for n € [1,250]; (c) for
n € [70, 105].

dynamics observed in the experiment is deterministic.
However, no quantitative information can be extracted
from Fig. 3(b) which is blurred by variations in control
parameters, as can be verified by plotting separately
graphs corresponding to different parts of thetime series
If we restrict ourselves to the first chaotic zone of Fig. 3
(i.e, for n € [70, 105], or t € [806.8, 819.0]), the result-
ing plot is much closer to a one-dimensional map but
there are now too few points to rigorously assess the
presence of deterministic chaos, let alone to quantify it
[Fig. 3(c)].

Indeed, most characterization methods require that the
neighborhood of each point in phase space is sufficiently
populated to capture the local structure of the attractor.
Thus, they depend on the time series nonlocally in time:
nearest neighbors in phase space are usually located far
apart in the time series (long-term recurrence). This
makes these methods fragile with respect to variations
of control parameters along the time series As we see
below, atopological analysis circumventsthis problem by
extracting information from isolated time series seg-
ments, namely, those approaching a closed orbit (short-
term recur rence): we shall not only extract a signature of
an underlying chaotic dynamics in the fixed-parameter
system but also obtain lower bounds on its topological
entropy, a classical measure of chaos

Thetime series of Fig. 1displays many periodic events.
As with the period-3 orbit, many of them correspond to
stable periodic windows explored by the system as pa-
rameters are swept but some can also be found in zones of
irregular behavior. They then likely correspond to aclose
encounter with one of the infinity of unstable periodic
orbits embedded in a chaotic attractor.

The topological analysis of chaos [4,5] proceeds by
characterizing the organization of periodic orbits, which
are associated with closed curves in phase space In
dimension three, how these curves are intertwined can
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be studied using knot theory and branched manifolds
(“ templates’ ). This is because the knot invariants of
periodic orbits provide topological signatures of the
stretching and squeezing mechanisms organizing a
strange attractor [4,5]. A major advantage of topological
analysis is that each time series segment shadowing a
periodic orbit, stable or unstable, can be analyzed inde-
pendently of the others

Although the time series of Figs 1(b)-1(e) is very
short, we have detected several closed orbitsin it. The cri-
terion was that the orbit should return to its initial con-
dition in the (T,, T,.,) plane with 3% accuracy. These
orbits are the period-1, period-2, period-4, and period-8
orbits of the period-doubling cascade, the period-3 orbit,
as well as four orbits of periods 6, 7, 9, and 10.

We have found that the braids associated with these
closed orbits can all be projected to a standard horseshoe
template[4,5], asthe structure of the return map suggests.
More precisely, they have the same braid types as orbits 1,
01, 013, 013(01)2, 01°, 011010111, (011)31, 011, and 013 of
the standard horseshoe template (ordered as in the time
series). Linking numbers were not computed as this
would require comparing different parts of the time
series This observation suggests that although orbits
change their shape as control parameters vary along the
time series, their topological organization is not modi-
fied. Such a robustnesswould be extremely unlikely if the
irregular dynamics observed was not deterministic.

However, topological analysis can provide us with
stronger evidence. Indeed, we have found that two of the
closed orbitshave a*“ positive-entropy” braid type Oneis
shown in Fig. 4. In a stationary system, how trajectories
are stretched and folded around such an orbit forces the
existence of an infinity of periodic orbits [6]. Thus,
positive-entropy orbits exist only in systems that have
experienced infinitely many bifurcations and are chaotic
in someregion of parameter space [4—6,14,15]: a*“ pretzel
knot” (i.e, a common type of positive-entropy orbit
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FIG. 4. (a) A period-9 closed orhit detected inthetime series
The open circle indicatesits starting and final points The inset
displays trajectory segments around these two points; (b) a
presentation of thisorbit asan open braid, using the diagonal as
a Poincaré section.
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having such a knot type) in athree-dimensional flow im-
plies chaos just as a period-3 orbit in a one-dimensional
map does. T he presence of such an orbit in an experimen-
tal data set wasfirst used as an indicator of chaosfor the
Belousov-Zhabotinskii reaction [16]. Pretzel knots have
also been observed in laser experiments [17,18]. How
many orbits are forced by a given braid type is quantified
by itstopological entropy, which is alower bound on the
topological entropy of systems containing it [6].

Using the TRAINS program by Hall [19], we have com-
puted the topological entropy of the braid in Fig. 4(b) to
be hy ~ 0.377057 > 0. Similarly, the period-10 orbit has
entropy iy ~ 0.473404 > 0. If our system were station-
ary (as in Refs [16-18]), the presence of such orbits
would unambiguously imply chaos and provide a lower
bound on topological entropy. However, the closed orbit
in Fig. 4 is not a true periodic orbit, since control pa-
rameters have different values at its starting and final
points

Nevertheless, the following observation gives us con-
fidence that the observed braid type is actually present
in the unperturbed system. The inset of Fig. 4 shows
two trajectory segments{X(z);t € [t, — 7|, tp + 7,1} and
{X@);t€[ty+T— 7,1ty + T + 7,]} centered around the
starting point X(z,) and the ending point X(z, + T) of the
closed orbit, with 7, + 7, = 350 ns being approximately
one orbital period. Although the two segments corre-
spond to the extreme values of the control parameter
along the closed orbit [Fig. 3(a) indicates that parameter
variation is monotonic for n & [86, 93]], we see that they
are almost superimposed on each other. This indicates
that the vector flow changesvery little betweenr = 7, and
t = t, + T. The separation between the two segments can
then be taken as an upper bound on the separation be-
tween the closed orhit observed and aperiodic orbit of the
unperturbed system. As this separation is significantly
smaller than the separation between strands of the closed
orbit in Fig. 4(a), the unperturbed system (i.e, the
TROPO with fixed cavity length) must have a periodic
orbit with the braid type shown in Fig. 4(b). We can then
conclude that it exhibits deterministic chaos Similarly,
perturbations due to noise have no influence if their
amplitude is small with respect to interstrand distance.

Our study shows that closed orbits with a positive-
entropy braid type can be exploited when the influ-
ence of parameter variation issmall over oneorbit period,
a modest requirement compared to other methods
However, we expect this approach to be also applicable
to stronger nonstationarity. Generically, closed orbits of a
system with a swept parameter connect continuously to
periodic orbits of the unperturbed system asthe sweeping
rate goes to zero, as is easily shown using the implicit
function theorem. |f apositive-entropy closed orbit can be
shown not to change its braid type along the homotopy
path, then it provides a signature of chaos Understanding
when braid typeispreserved isdifficult, but apreliminary
study of the logistic map with a swept parameter (where
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permutation of the periodic points is the counterpart of
braid type) suggests that this approach is quite robust.
Regarding applicability to higher-dimensional systems,
where knots and braidsfall apart, we are currently devel -
oping alternate methods for computing the topological
entropy of a periodic orhit.

In conclusion, sophisticated topological methods
have allowed usto obtain the first experimental signature
of deterministic chaos in an optical parametric oscil-
lator using only a very short segment of a nonstationary
time series, which contained a positive-entropy orbit.
Moreover, the fact that two such orbits were detected in
lessthan 40 cyclesindicatesthat these signatures of chaos
are extremely robust with respect to variation in control
parameters.
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