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Incoherent Coincidence Imaging and Its Applicability in X-ray Diffraction
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Entangled-photon coincidence imaging is a method to nonlocally image an object by transmitting a
pair of entangled photons through the object and a reference optical system, respectively. The image of
the object can be extracted from the coincidence rate of these two photons. From a classical perspective,
the image is proportional to the fourth-order correlation function of the wave field. Using classical
statistical optics, we study a particular aspect of coincidence imaging with incoherent sources. As an
application, we give a proposal to realize lensless Fourier-transform imaging, and discuss its applica-
bility in x-ray diffraction.
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FIG. 1. A setup of entangled-photon coincidence imaging.
The source S emits pairs of entangled photons. One of the
photons transmits through the test system ht�x; xt� which con-
tains an unknown object, and the other photon transmits
through a known reference system hr�x; xr�. Two detectors Dt
where h� � �i means the ensemble average. In entangled-
and Dr record the intensity distribution. The coincidence rate
G�2;2��xr; xt� is measured to give an image of the object.
Optical imaging techniques using classic light sources
have been the primary tools for scientific research and
industrial applications. In recent years, there has been
increasing interest in the field of quantum imaging, in
which nonclassical states of light are used as light sources
[1–12]. Special attention is focused on entangled-photon
coincidence imaging [1–8].

The role of entanglement in coincidence imaging leads
to some debate now. The authors of Ref. [5] stated that
only quantum entangled sources can be used to realize
coincidence imaging, and using classical light sources
cannot produce the image of the object. However, using
classically correlated beams, the experiment performed
in [13] also produced a coincidence image. Moreover, in a
recent preprint [14], it was shown using quantum theory
that an object can be imaged via coincidence imaging
with split incoherent thermal radiation. In this Letter, we
give a completely classical description of coincidence
imaging and obtain a relationship between the intensity
correlation in the detectors and the source. Especially,
with proper choice of the imaging geometry, we find it is
possible to realize a kind of lensless Fourier-transform
imaging by using an incoherent light source, which may
be applicable for x-ray diffraction.

An example of the setup of a coincidence imaging
system is shown in Fig. 1 [6,7]. If the source S produces
pairs of entangled photons, the produced photons are
transmitted through a known (reference) optical system
and an unknown optical system (test) which contains the
object to be imaged. These two optical systems are char-
acterized by their impulse response functions hr�x; xr�
and ht�x; xt�, respectively. Two detectors D1 and D2 re-
cord the intensity distribution of the test and reference
photons. The coincidence rate of photon pairs at these two
detectors [G�2;2��xr; xt�] is proportional to the fourth-order
correlation function of the optical fields,

G�2;2��xr; xt� � hI�xr�I�xt�i; (1)
0031-9007=04=92(9)=093903(4)$22.50 
photon imaging, the object can be extracted from the
marginal coincidence rate [I�2��xr� �

R
dxt G�2;2��xr; xt�]

or the conditional coincidence rate [I�2�0 �xr� �
G�2;2��xr; 0�] [6]. Although the reference photons do not
pass through the object, the object contained in the test
system can be imaged at the reference detector. Such a
nonlocal imaging technique may be useful for secure
information transfer.

Now, suppose the light source S is a classical light
source; we use classically statistical optics to describe
the coincidence imaging process. In the framework of
fluctuating optical fields [15], the fourth-order correlation
function G�2;2��xr; xt� relates to the optical fields in the
reference and test detectors by

G�2;2��xr; xt� � hE�
r�xr�E

�
t �xt�Er�xr�Et�xt�i; (2)

where Er�xr� is the optical field in the reference detector
and Et�xt� is the optical field in the test detector. For
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simplicity, we assume the source is quasimonochromatic
with a mean wavelength . Only one transverse dimen-
sion (x) is considered though the generalization to two
transverse dimensions is straightforward.

If the optical field in the source is represented by E�x�,
the propagation of E�x� through two different optical
systems leads to

Ek�xk� �
Z

dxE�x�hk�x; xk�; (3)

where k � r; t. Note that hr, ht are deterministic func-
tions; by substituting Eq. (3) into Eq. (2), we have

G�2;2��xr; xt� �
Z

dx1 dx
0
1 dx2 dx

0
2 G

�2;2��x1; x
0
1; x2; x

0
2�

	 hr�x1; xr�h
�
r�x

0
1; xr�ht�x2; xt�h

�
t �x

0
2; xt�;

(4)

where
093903-2
G�2;2��x1; x
0
1; x2; x

0
2� � hE��x01�E

��x02�E�x1�E�x2�i (5)

is the fourth-order correlation function of the optical
fields at the light source.

Equation (4) establishes the relation between the coin-
cidence rate at the detectors and the correlation at the
source. We need to know the properties of the light source
to go further. In many cases, the field fluctuations of a
classical light source can be modeled by a complex cir-
cular Gaussian random process with zero mean [15], then

G�2;2��x1; x01; x2; x
0
2� � G�1;1��x1; x01�G

�1;1��x2; x02�


G�1;1��x1; x02�G
�1;1��x2; x01�; (6)

where G�1;1��xi; xj� is the second-order correlation func-
tion of the fluctuating source field, represented by
G�1;1��xi; xj� � hE��xi�E�xj�i, and satisfies G�1;1��xi; xj� �
�G�1;1��xj; xi���.

Substituting Eq. (6) into Eq. (4), we get
G�2;2��xr; xt� �

 Z
dx1 dx01 G

�1;1��x1; x01�hr�x1; xr�h
�
r�x01; xr�

!
	

 Z
dx2 dx02 G

�1;1��x2; x02�ht�x2; xt�h
�
t �x02; xt�

!




 Z
dx1 dx02 G

�1;1��x1; x02�hr�x1; xr�h
�
t �x02; xt�

!
	

 Z
dx2 dx01 G

�1;1��x2; x01�ht�x2; xt�h
�
r�x01; xr�

!

� hIr�xr�ihIt�xt�i 


��������
Z

dx1 dx02 G
�1;1��x1; x02�hr�x1; xr�h

�
t �x02; xt�

��������
2

; (7)
The first term on the right side of Eq. (7) is the multi-
plication of the intensity distribution at the reference and
test detectors, and cannot be used to realize the coinci-
dence imaging [5,6]. However, if G�1;1��x1; x2� is not fac-
torable, the second term on the right side of Eq. (7) has the
similar form as in the entangled-photon coincidence
imaging, apart from the presence of a phase conjugated
h�t instead of ht. Since a second-order correlation function
of a classical light source is factorable only when the
source is fully coherent, we can perform the coincidence
imaging using partially coherent or incoherent light
sources.

Let us introduce the intensity fluctuations in the two
detectors:

�Ik�xk� � Ik�xk�  hIk�xk�i; (8)

in which k � r; t. The correlation between the intensity
fluctuations at the reference and test detectors is
h�Ir�xr��It�xt�i �

��������
Z

dx1 dx02 G
�1;1��x1; x02�hr�x1; xr�h

�
t �x02; xt�

��������
2

: (9)
This correlation function is experimentally measurable.
A similar result has been derived in Ref. [14], but quan-
tum theory is used in the derivation.

Based on Eq. (9), we propose a scheme to realize
lensless Fourier-transform imaging by selecting proper
hr and ht.

Suppose the light source is fully spatially incoherent,
then

G�1;1��x1; x2� � I�x1���x1  x2�; (10)

where I�x� is the intensity distribution of the source and
��x� is the Dirac delta function.
Further, the reference system contains nothing but
free-space propagation from S to Dr. Under the paraxial
approximation, the impulse response function of the refer-
ence system is

hr�x; xr� �
eikdr

idr
exp

�
i�
dr

�x xr�
2

�
; (11)

where  is the source wavelength and k � 2�= is the
wave number; dr is the distance between S and Dr.

The test system comprises an object at a distance d1
from S and a distance d2 from Dt. The wave emitted from
the source propagates freely to the object characterized
093903-2
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by the transmittance t�x0�; after transmission, it propagates freely to the test detector. The impulse response function of
such a test system is

ht�x; xt� �
Z

dx0
eikd1

id1
exp

�
i�
d1

�x x0�2
�
t�x0�

eikd2

id2
exp

�
i�
d2

�xt  x0�2
�
: (12)

Substituting Eqs. (10)–(12) into Eq. (9), after some calculations, we have

h�Ir�xr��It�xt�i �

��������
Z

dx0 dx I�x�
eikdr

idr
exp

�
i�
dr

�xxr�
2

�
eikd1

id1
exp

�
i�
d1

�x x0�2
�
t�x0�

eikd2

id2
exp

�
i�
d2

�xt  x0�2
���������

2

:

(13)

If the source is large enough and the intensity distribution is uniform, we can regard I�x� � I0; then Eq. (13) becomes

h�Ir�xr��It�xt�i �

��������
Z

dx0 I0
eik�d1dr�

i�d1  dr�
exp

�
i�

�d1  dr�
�xr  x0�2

�
t�x0�

eikd2

id2
exp

�
i�
d2

�xt  x0�2
���������

2

: (14)

Selecting d1, d2, and dr to satisfy d1  dr � d2, the quadratic terms of x0 can be canceled. Equation (14) has the form

h�Ir�xr��It�xt�i �

��������
Z

dx0
I0

2d22
exp

�
i�
d2

�x2t  x2r�
�
t�x0� exp

�
i2��xt  xr�x0

d2

���������
2

�
I20

4d42

�������T
�
2��xt  xr�

d2

	�������2
; (15)
where T�q� is the Fourier transformation of t�x0�. The
correlation function between the intensity fluctuations at
the reference and test detectors is the Fourier transforma-
tion of the transmittance of the object. We note that the
appearance of h�t rather than ht in Eq. (7) allows this
particular result to be obtained without the use of a lens
anywhere in the system.

If we measure the conditional correlation function of
the intensity fluctuations by using a pointlike test detector
located at xt � 0,

�I�2�0 �xr� � h�Ir�xr��It�0�i; (16)

it will generate an image recorded in the reference detec-
tor but contains the information of the object. Equations
(15) and (16) then yield

�I�2�0 �xr� �
I20

4d42

�������T
�
2�xr
d2

	�������2
: (17)

We found that, under the conditions of a large, uniform,
fully incoherent light source, without any optical instru-
ments (such as lens) in the reference and test systems,
using a pointlike detector Dt and an array of pixel de-
tectors Dr, such a coincidence imaging system realizes
the function of Fourier-transform imaging.

Because of the success of the oversampling approach,
coherent x-ray diffraction imaging has attracted much
attention recently [16–18]. However, several factors still
093903-3
limit the imaging quality. Because it is very difficult to
fabricate optical components (such as lenses) that func-
tion in the x-ray regime, free-space propagation is used to
obtain the diffraction pattern. Also, it is well known that
currently used x-ray sources are generally incoherent. To
achieve the spatial coherence needed to form high-quality
diffraction patterns, such x-ray sources must be small and
far from the object [19]. These requirements decrease the
illumination efficiency and necessitate the use of high
brightness sources such as synchrotron sources.

The lensless Fourier-transform imaging proposal given
in this Letter can overcome these difficulties. In fact, the
image obtained in Eq. (17) is exactly the diffraction
intensity pattern of the object. Since there is no require-
ment on the fully coherence, any kind of x-ray source can
be used to realize x-ray diffraction imaging. As our
method is insensitive to phase fluctuations of the source,
the signal-to-noise ratio will be better than that achieved
in direct diffraction imaging with an incoherent (or per-
haps even partially coherent) source. So the incoherent
coincidence imaging technique is applicable for x-ray
diffraction.

Finally, we would like to discuss the effects of the time
response of the detectors on our new imaging scheme.
Generally, the intensity correlation hIr�xr�It�xt�i is not
exactly measurable due to the finite time response of
the detectors. Instead, we can measure only
hI0r�xr; t�I
0
t�xt; t
 ��i � �

Z t
TR=2

tTR=2

Z t
�
TR=2

t
�TR=2
hIr�xr; t

0�It�xt; t
00�i 	 dt0 dt00; (18)
where we write down the time dependence explicitly. In
Eq. (18), � is a coefficient and TR is the average time
response of the detectors. Since in our imaging scheme
the free-space propagation distance in hr and ht is equal,
the time delay � � 0. In x-ray range, TR is much larger
than the coherent time of the fluctuated fields, so the
integration of Eq. (18) will be proportional to the
equal-time intensity correlation hIr�xr�It�xt�i [20].
Actually, in recent synchrotron radiation experiments,
093903-3



P H Y S I C A L R E V I E W L E T T E R S week ending
5 MARCH 2004VOLUME 92, NUMBER 9
spatial intensity correlation has been measured by using
slow response detectors [21]. The key point is that, since
only spatial intensity correlation is concerned in our
imaging scheme, using slow response detectors will
screen the temporal fluctuation and measure the spatial
intensity correlation only.

In conclusion, we have shown that a classically inco-
herent light source can be used to realize coincidence
imaging based on the measurement of the correlation
between the intensity fluctuations. Our treatments are
fully classical and do not use quantum theory. As
an application, a scheme to realize lensless Fourier-
transform imaging is described, which may be very use-
ful in x-ray diffraction imaging. These results will be
generalized to three dimensional and the effects of source
distribution or other imperfections will be considered in
future works.
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