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We perform a systematic study of the thermodynamics of quantum gases in the unitarity limit. Our
study is based on a ‘‘universality hypothesis’’ for the relevant energy scales which is supported by
experiments and can be proven in the Boltzmann regime. It implies a universal form for the grand
potential, which is specified by only a few universal numbers in the degenerate limit. This hypothesis
provides a simple way to determine the density profile of a trapped fermion superfluid. It implies a
superfluid bump in the density and gives the general expression of the second sound velocity of a
homogeneous superfluid at unitarity.
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race for achieving fermion superfluidity. On the other
hand, the normal state is equally intriguing, for it con-
tains the same nonperturbative effects.

density f � f�T; n; B; frig�, which is a function of T, n,
external magnetic field (which controls asc), and
other interaction lengths such as effective range, etc.
Feshbach resonance has introduced a whole new di-
mension in the research of degenerate quantum gases.
Through this resonance, effective interactions between
atoms are dramatically increased. Such resonance arises
when the energy of a pair of scattering atoms is tuned
close to that of a molecular bound state by an external
magnetic field, thus causing substantial resonance scatter-
ing. At resonance, scattering reaches the unitarity limit:
with a diverging scattering length asc, and a cross section
reaching the maximum value 4�=k2, where k is the rela-
tive momentum of the scattering atoms. These properties
are universal because they are independent of any feature
of atomic potentials.

This universality, simple as it is, poses a challenging
many-body problem, as there are no small parameters. On
the other hand, it can lead to great simplification if one
makes a reasonable assumption, referred to as universal-
ity hypothesis (UH) : that the only dominant length scale
at unitarity in the ground state is interparticle spacing
n�1=3, where n is the density. The idea is that if the only
relevant length scales in the effective theory are asc and
n�1=3, then asc must drop out from all physical quantities
at resonance because it is infinity, leaving n�1=3 the only
relevant length scale. The word ‘‘hypothesis’’ is to indi-
cate that although universality has emerged in approxi-
mate calculations [1,2], it has not been proven rigorously
except in Boltzmann regime [3]. This hypothesis also
implies that for both bosons and fermions, the only
relevant energy scale is the ‘‘Fermi’’ energy EoF�n� �
� �h2=2M��3�2n�2=3. For the same reason, the transition
temperature Tc of a Fermi superfluid must scale as TF �
EF=kB, i.e., TC � �TF, where � is a universal constant.
That � can be of order 1 was suggested by Holland et al.
[1]. Current estimates of Tc range from 0.5 to 0:2TF
[1,4,5]. The possibility of such a high Tc has made
Feshbach resonance a focus of attention in the current
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The universal properties of a Fermi gas in unitarity
regime have been demonstrated recently by a sequence of
beautiful experiments [6–9]. John Thomas’s group [6] has
pointed out that the interaction energy Eint of a Fermi gas
of 6Li near Feshbach resonance is of the form �EoF, � �
�0:25 for 0:1< T=TF < 0:2. Direct measurement of this
energy was performed by Salomon’s group [7]. They
found that Eint remains smooth across the resonance de-
spite the diverging scattering length, and saturates at a
value of the order of Fermi energy EF, with ���0:3 at
0:5< T=TF < 1. Similar saturation is also observed in rf
spectroscopy by Ketterle’s group [8] and Jin’s group [9].
The observed relation between Eint and EoF is a support for
UH. Further experiments on other alkali fermions will
help to verify its validity. The sign of Eint and its con-
tinuity across the resonance [7], however, require addi-
tional physics and are related to formation of molecules
[3]. Since the Duke experiments cover the temperature
range above and below the estimated Tc, it raises the
question of how superfluidity is affected by unitarity,
and their signature in the unitarity regime.

In this Letter, we perform a systematic study of the
thermodynamics of quantum gases at unitarity using UH.
We show that (i) At unitarity, the thermodynamic poten-
tials acquire universal forms depending only on the nature
of the thermodynamic phase. (ii) The properties of a
degenerate Fermi gas near resonance (be it normal or
superfluid) are characterized by only a few universal
numbers. (iii) Universal thermodynamics provides a
simple way to determine the density profile of a trapped
fermion superfluid near resonance. (iv) It also allows one
to calculate the hydrodynamic modes of a fermion super-
fluid at finite temperature. (v) Bose gas in the unitarity
limit, if stable, will have a fermionic energy density.

Before proceeding, we first make clear what quantities
UH describes. Let us consider the Hemholtz free energy
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(collectively denoted as frig). While asc diverges at reso-
nance (say, at B � Bo), it is assumed that frig remains
atomic size so that xi � rin1=3 
 1. If f is smooth across
the resonance (as indicated in Ref. [7]), then in the
neighborhood of Bo it is well approximated by its value
at resonance f�T; n;Bo; fxig�. Moreover, if f has an
asymptotic expansion in xi, we then have

f�T; n;Bo; fxig� � f�T; n;Bo; 0��1� 0�xi��: (1)

UH describes the first term Eq. (1)—that it has only two
energy scales, EoF�n� and kBT; and is independent ofBo for
it would otherwise introduce additional energy scales. In
this Letter, quantities of ideal gas will be denoted by a
superscript ‘‘o’’.

Universal thermodynamics near resonance.—To be
efficient, we consider the grand potential instead of
the Hemholtz free energy. The former is defined as
��T;�"; �#; V� � �kBT ln Tre��H��"N"��#N#�=kBT for a
two component quantum gas (labeled as " and # ) with
massM, chemical potential�"; �#, and volume V.We first
consider �" � �# which implies n" � n# � n=2, m �
�n" � n#�=2 � 0. According to UH, all microscopic scales
are absent at resonance. The only energy scales are kBT
and �. The corresponding density scales are ��3 and
nf���, where � � h=

�������������������
2�MkBT

p
is the thermal wave-

length, and nf��� � �3�2��1�2M�= �h�3=2. Since pressure
P � ��=V, dimensional analysis implies

P�T;�� �
2kBT

5�3
W 0�x

�1� �
2�nf���

5
G0�x�; (2)

where x � kBT=�, and (W 0, G0) are dimensionless scal-
ing function. These two forms are useful in Boltzmann
and degenerate regimes, respectively, since their argu-
ments are small in these cases. Using the well-known
relation ! � Ts��n� P and dP � nd�� sdT, where
! and s are energy density and entropy density, we have

n � nf����G0�x� � �2=5�xG0
0�x��; (3)

s � �2=5�kBnf���G
0
0�x�; ! � 3P=2: (4)

Since universality hypothesis makes no reference to the
thermodynamic phase, Eqs. (2)–(4) apply to both normal
and superfluid phases, which of course have different
scaling functions. The scaling functions, however, are
constraint by the positivity of s and n, as well as stability
conditions @2P=@T2 � @s=@T > 0 and @2P=@�2 �
@n=@� > 0. The density profile n�x� in a nonuniform
potential V�x� can be readily determined from Eq. (3)
within local density approximation (LDA) by replacing�
with ��x� � �� V�x�.

When m � 0, universality hypothesis implies that

P�T;�"; �#� �
2�nf���

5
G�x;%=��; (5)

where � � ��" ��#�=2, % � �" ��#, and G�x;%=�� is
a scaling function even in % due to the invariance of �
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under spin exchange. For small %, we have

G �x;%=�� � G0�x� �
G2�x�
2

�
%
�

�
2
�� � � ; (6)

where G2 is another dimensionless function. Defining
magnetic susceptibility & and specific heat c at constant
� as m � �n" � n#�=2 � @P=@% � &% and c �
T�@s=@T��, Eqs. (5) and (6) then imply c=�T&� �
k2BG

00
0 �x�=G2�x�, which is a universal function of

x � kBT=�.
Boltzmann limit.—This is the limit where the

fugacities zi � e�i=kBT , i �"; # are small, and UH
can be proved rigorously [3]. Expanding � in zi for a
Fermi gas, we have P�T;�"; �#� � P�o��T;�"; �#� �
2

���
2

p
b2�kBT=�3�z"z#, where P�o��T;�"; �#� �P

i�";#kBT�
�3�zi � 2�5=2z2i � �O�z3i � is the pressure of

the an ideal Fermi gas, and b2 is the second virial co-
efficient which is a function of temperature only [10].
Using the relations ! � Ts��"n" ��#n# � P and dP �P
inid�i � sdT, we have

n"�#��
3 � z"�#��1� 2

���
2

p
b2z#�"�� � 2�3=2z2

"�#�
; (7)

s �
5

2

P
T
�
�"n" ��#n#

T
� 2

���
2

p kBT

�3
@b2
@T

z"z#; (8)

! �
3P
2

� 2
���
2

p kBT

�3
z"z#T

@b2
@T

: (9)

Since b2 � 1=2, and @b2=@T � 0 at resonance [3,10], we
recover the universal thermodynamics in I.

It is also useful to use �T; n� instead of �T;�� as
variables. The following relations are applicable to all
scattering lengths and can be compared with experi-
ments. Eliminating zi in Eqs. (7)–(9), we have

P � kBT�n� �2�5=2�n2" � n2# � � 2
���
2

p
b2n"n#��

3�; (10)

! �
3

2
kBT

�
n�

�n2" � n2# ��
3

25=2
�*n"n#

�
; (11)

where * � 2
���
2

p
�3�b2 �

2
3T@b2=@T�. From Eqs. (7) and

(10), it is easy to calculate isothermal compressibility
+T � n�1�@n=@P�T and isothermal spin susceptibility
&T � �@m=@%�T . Their deviations from ideal gas
values are �+T �

���
2

p
b2n�

3=�nkBT�, �&T � ��n=kBT�
�

���
2

p
b2n�

3=4�, hence n2�+T=�&T � �4. It is easy to
derive the same results for the Bose gas, which is
Eqs. (10) and (11) with a minus sign in the n2i terms.

Degenerate Normal Gas.—This is the case x �
kBT=�
 1. For small spin polarization, the pressure
can be expanded in x and %=� as P � P�n��T;�; %�,

P�n� �
2�nf���

5
A3=2

�
1�

5�2�BkBT�2

8�A��2

�
15�C%�2

32�A��2
� . . .

�
; (12)
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FIG. 1. The upper plot determines the superfluid (SF) and
normal (N) regions. The densities, Eqs. (14) and (21) , are
depicted as solid and dashed curves in the lower figure. The
arrows in (N) indicate increasing degenerate (D) and
Boltzmann (B) behavior. We use ��r� � ��M!2r2=2, A �
1:3, B � 1, D � 1:2, � � 0:2, � � 32 �h!, kBT � 5 �h!, hence
~�� � �A � 2:6, kBT=� � 0:16, kBT=��A�� � 0:65.
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where coefficients A, B, C are universal numbers [11].
They are written in this form to simplify later discus-
sions. The absence of linear T term is due to vanishing
entropy at T � 0. For ideal Fermi gas, A � B � C � 1.
Stability conditions @s=@T, @n=@� > 0 imply that
A;B > 0; and C > 0 unless the system is ferromagnetic.
From Eq. (3) and the relation m � @P=@%, we have
n � n�n��T;�; %�,

n�n� � nf�A��
�
1�

�2�BkBT�
2

8�A��2
�

3

32

�
C%
A�

�
2
�� � �

�
;

(13)

and m � �3c=�8A���nf�A��=�A����C%�, where nf�A�� �
A3=2nf���. These two equations for n and m readily give
the density profile ni�x� (i �"; # ) in nonuniform poten-
tials Vi�x� within LDA by substituting �i�x� �
�i � Vi�x�. Note, however, that these relations are valid
only for�i�x� � kBT and %
 �. As one approaches the
surface of the cloud, density decreases and the system
will switch to Boltzmann regime in surface regions
where e�i�x�=kBT 
 1, with densities given by Eq. (7).

To find an accurate formula interpolating between de-
generate and Boltzmann limits, we note that for % � 0
and deep in Boltzmann regime (i.e., z � e�=kBT 
 1),
Eq. (7) is simply n � z=�3 and is the high temperature
limit of the ideal gas relation n � nid��; T�, nid��; T� �
��3f3=2�z�, where f3=2�z� is the Fermi integral [12]. On
the other hand, Eq. (13) is precisely the low temperature
expansion of the ideal gas relation nid��; T� with the
substitution ��; T� ! �A�;BT�. The desired interpola-
tion will then be of the form

n�n��T;�� � nid�A�x��;B�x�T�; x � �=kBT; (14)

where �A�x�; B�x�� are functions of x (as required by
UH) such that �A�x�; B�x�� ! �A;B� as x� 1, and
�A�x�; B�x�� ! �1; 1� as z � ex 
 1. Since the switching
from degenerate to Boltzmann regime takes place at ��
kBT, a simple extrapolation is A�x� � �Aex � 1�=�ex � 1�,
B�x� � �Bex � 1�=�ex � 1�. The density profile in a trap
calculated within LDA using Eq. (14) and these expres-
sions of A�x� and B�x� is shown as the dashed curve in the
lower figure in Fig. 1.

To derive relations related to experiments, we invert the
relations n � n�T;�; %�, m � m�T;�; %� to express �, %,
and hence ! � 3P=2 in terms of �T; n;m�. To the lowest
order in kBT=EoF, we have � � ��n��T;�; %�,

��n� � EoF�n��1�W�=A;
C%
A�

�
8A
3C

m
n
; (15)

!�n� � �3nEoF�n�=5��1� 5W�=A; (16)

where W � ��2=12��BkBT=E
o
F�

2 � �2Am=3Cn�2. Al-
ternatively, we can write ��n� � EoF�1� ��� and !�n� �
�3nEoF=5��1� �!�, where �� and �! are related to the
interaction parameters measured in Refs. [6,7], respec-
tively [13]. In the degenerate limit, the W term will be
small. We then have A � �1� ����1 � 1:3 since �� �
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�0:25 from Ref. [6]. Equations (15) and (16) imply that
�� and �! have opposite temperature and spin polariza-
tion corrections (i.e., the W=A term), differing from each
other by a factor of 5.

Superfluid at resonance.—This is the case where uni-
versal thermodynamics proves very useful. We shall con-
sider superfluids with zero spin polarization (hence
% � 0). Within Ginzburg-Landau theory, the difference
in grand potential between a superfluid with order pa-
rameter ��r� � h " #i and a normal fluid nrar superfluid
transition is ���� ���n� �

R
dr!���r��,

!��� � Kjr�j2 � r2j�j2 � r4j�j4=2; (17)

where K; r4 > 0, and r2 vanishes at transition. The equi-
librium potential is � � ���o�, where �o is the mini-
mum of Eq. (17). According to universality hypothesis,K,
090402-3
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r2, and r4 are functions of kBT and � only. The condition
for transition r2�T � Tc;�� � 0 implies Tc � Tc���.
Using dimensional analysis and expanding r2, r4, and K
about Tc, we have kBTc��� � ��A��, K � 2 �h2=�2M�;
and to the lowest order of 1� T=Tc, r2 � 32��1�
T=Tc�, r4 � 34�=nf�A��, where (�, 2, 32, 34) are
universal numbers characterizing the superfluid state
near Tc.

When T > Tc, the system is normal, �o � 0, and

P � P�n��T;�; 0�; n � n�n��T;�; 0�: (18)

For T < Tc, we have j�oj
2 � r2=r4, and P �

P�n��T;�� � r22=�2r4�. Explicitly, we have j�oj
2 �

3nf�A���1� T=Tc�, 3 � 32=34, and P � P�s��T;��,

P�s� � P�n��T;�; 0� �
2�nf�A��D

5

�
1�

x
�

�
2
; (19)

where D � 532
2=�434�, and x � kBT=�. Equation (19)

then implies n � n�s��T;��,

n�s� � n�n��T;�; 0� � nf�A��D
�
1�

x
~��

��
1�

x
5~��

�
; (20)

where ~�� � �A, x � kBT=�. Equations (14) and (20) pro-
vide a simple method to construct the density profile of a
trapped superfluid within LDA: We first plot ��r� � ��
V�r� and ~����r� as a function of r. (See Fig. 1.) The
regions where kBT < ~����r� and ~����r�< kBT correspond
to superfluid (SF) and normal (N) region. The latter is
further separated into degenerate normal regime (DN),
~���� kBT; and Boltzmann regime (B), e�=kBT 
 1.
The densities in (SF) and (N) are given by Eqs. (20) and
(14), respectively. In Fig. 1 we use A � 1:3 as mentioned
before. The values of � and �h! are taken to be those in
typical experiments. All other parameters are taken to be
of order 1 for the purpose of demonstration. It is interest-
ing to note that the ‘‘superfluid bump’’ in Fig. 1 is also
obtained in Ref. [1]. Here, we show that it is a necessary
consequence of the universality hypothesis.

To express quantities in terms of T and n, we invert
Eq. (20) and then obtain � � ��s��T; n�, ! � !�s��T; n�. If
superfluid transition takes place in degenerate regime,
! � ��BkBTc�2=�8�A��2� � ��kB��2=8 
 1. In that
case, it is simple to show that

��s� � ��n��T; n; 0� � 4EoF

�
1�

y
�

��
1�

y
5�

�
; (21)

!�s� � !�n��T; n; 0� �
3nEoF4

5

�
1�

y2

�2

�
; (22)

where y � kBT=E
o
F�n�, kBTC � �A� � �EoF�n�, 4 �

2D=�3A� � 532
2=�6A34�. Equations (16) and (22) imply

a universal specific heat jump across Tc

��cs � cn�=cn�Tc � 124A=�5�2�2B2�: (23)

In the superfluid phase, a ‘‘second’’ sound mode u2 must
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exist in addition to the first (or ordinary) sound u1. In the
collisional limit, their velocities are u1 �

���������������������������
�@P=�M@n�7

p
and u2 �

�������������������������������������������
728s=�8n�@7=@T�P�

p
, respectively [14], where

7 � s=�Mn� is the entropy per unit mass, 8s is the super-
fluid mass density which can be obtained easily from the
gradient term of Eq. (17) to be 8s � ~22Mn�1� T=Tc�, ~22 �
4273 [15]; 8n is normal fluid mass density, 8s � 8n �
Mn. We then have

u21 � 2EoF=�3MA�; u2=u1 � Q
��������������������
1� T=Tc

p
; (24)

where Q2 � 3
4 ��B�

2 ~22f1� �124=5��A=��B�2g�1 [16].
Bosons in unitarity limit.—Since universality hypothe-

sis makes no reference on statistics, Eq. (12) applies to
stable Bose systems at unitarity, and predicts that they
will have a fermionic energy density. This prediction is
consistent with the well-known fermionic energy density
of 1D Bose gas with infinite repulsion (or Tonk gas). On
the other hand, universality hypothesis does not guaran-
tee superfluidity. This is also illustrated by 1D Tonk gas
which exhibits no superfluidity.
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