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Comment on “Antispiral Waves in Reaction-Diffusion
Systems”

In a recent Letter, Gong and Christini [1] provide
evidence for inwardly rotating spiral waves (antispiral
waves) in simulations of reaction-diffusion (RD) models.
They present a theoretical argument within the complex
Ginzburg-Landau equation (CGLE):

aW=W-—~1+ia)WPW+ (1+iB)V*W. (1)

They find that antispiral waves (AS) occur for a8 = 0 in
the parameter regions &« > 8 =0and 0= B8 > a. It is
suggested to derive the CGLE for a given RD model and
apply the criteria for AS. This Comment clarifies two
crucial points not treated in [1]: (i) The criterion for AS
emergence in the CGLE can be derived analytically using
earlier results. (ii) Regions for AS in the CGLE and in the
corresponding RD model are different; the correct CGLE
criterion for occurrence of AS in a RD model is & < 8 in
contrast to the results in [1].

Consider a general RD model in two dimensions (2D):

o;a = f(a, u) + DV2a, )

where (X, ) is a vector of concentrations and u is a
control parameter. Near a Hopf bifurcation at u = u,
of a state i, defined by f(iiy) =0 and with critical
frequency () and eigenvector #;, the vector @ may
be decomposed as (X, 7) =i, + 0,A(x, e +
ajA*(x, 1)e " The CGLE Eq. (1) describes the evolu-
tion of slow modulations A(x, 1) = \/eW(x, t)e’“’ of a fast
homogeneous oscillation [2]. Here, € = (u — u.)/ . <
1 and ¢ is an overall frequency shift. The CGLE coor-
dinates are x = \/ex and t = ef. Frequencies w in the
CGLE result only in a small correction of order ew to the
original frequency ().

Spiral waves of the 2D CGLE have the form
W(r, 0,t) = F(r)el?*/:0] in polar coordinates (r, 6).
For r — oo, the radial dynamics follow F(r) — /1 — k%
and f(r, 1) = kgr — wgt = kg(r — vyt) with a selected
wave number kg uniquely determined by «, 8 and a
frequency wg = a + (B — a)kg. Hagan constructed a
nonlinear eigenvalue problem for kg(c, 8) [3]. Its result
agrees well with the kg selected by spirals in simulations
of the 2D CGLE [2]. The results of [2,3] indicate that
k¢=0if o = B and kg > 0 (kg <0) if &« < B (a > B).
The group velocity v, = dwg/dks = 2(8 — a)kg > 0.
The phase velocity vy, = wg/kg can change sign, if
either kg or wg changes sign. Phase waves may travel
outward (vy, > 0) or inward (vy, <0) in the CGLE.
Consequently, vy, > 0 corresponds to spirals and vy, <
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FIG. 1. Parameter space (a, B8) of the CGLE is separated by

the curves wg = 0 and kg = 0 in four subdomains. Bold (italic)
text refers to the RD model (corresponding CGLE).

0 to AS in the CGLE. The two curves wg = 0 and kg = 0
separate regions where antispirals and spirals appear in
the CGLE (see Fig. 1). vy, diverge for kg — 0, while
v = 0 for wg = 0. Figure 1 recovers the CGLE results
of [1] and extends them to regions with a8 < 0.

In the original RD model, the group velocity v, =
J€v, > 0. For the phase velocity of waves, one obtains
Upn = [—Q + e(wg — co)l/ks = —Q/(/eks).  Hence,
U, changes sign only where kg changes sign, i.e., for @ =
B. Any wg in the CGLE is compensated by the fast
frequency (2; thus, an AS in the CGLE can represent a
spiral in the corresponding RD model and vice versa
(see Fig. 1). Altogether, AS occur in RD systems for
positive kg, i.e., for & < B. The frequency Q,5 = Qg —
K2(B — a) < Q, where  is the bulk frequency, in
agreement with experiments exhibiting AS in a chemical
reaction [4].
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