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Time-Resolved Reversal of Spin-Transfer Switching in a Nanomagnet
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Time-resolved measurements of spin-transfer-induced (STI) magnetization reversal were made in
current-perpendicular spin-valve nanomagnetic junctions subject to a pulsed current bias. These results
can be understood within the framework of a Landau-Lifshitz-Gilbert equation that includes STI
corrections and a Langevin random field for finite temperature. Comparison of these measurements
with model calculations demonstrates that spin-transfer induced excitation is responsible for the
observed magnetic reversal in these samples.
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FIG. 1. (a) The dc response of a sample CPP spin valve under
spin-polarized current injection showing the typical spin-
current-induced magnetic switch. The junction shown here is
about 50� 100 nm2 in size. (b) The difference between the
measured IV curve and a straight line. The five points cor-
to be around �2�Ms��, where � � 2�B= �h is the gyro-
magnetic ratio, and Ms is the saturation magnetiza-

respond to “H” � home, “B” � background, “P” � pulsed,
“S” � switched, and “R” � reset.
Nonequilibrium spin-transfer-induced [1–8] (STI)
magnetization reversal is a phenomenon observed only
in small spin-valve structures typically less than 0:1 �m
in size. It reveals a new type of interaction between
magnetization and a spin-polarized transport current.
To understand the nature of these interactions and to
confirm a modified Landau-Lifshitz-Gilbert (LLG) equa-
tion description, it is important to experimentally ex-
amine STI reversal including the effects of temperature.
Experiments measuring dc (or quasi-dc) transport [9,10]
as well as microwave emission [11–13] already begin to
address this question, but complications associated with
accounting for finite temperature effects in previous ex-
periments make time-resolved reversal experiments com-
plimentary and revealing.

Here we describe an experiment that measures the
magnetoresistance response of a spin-valve junction in
response to spin-transfer-induced reversal. The experi-
ment demonstrates the combined effect of spin trans-
fer and thermal activation on the reversal process of a
nanomagnet. It gives an experimental assessment of the
reversal speed and its dependence on driving current
amplitude. Our measurements confirm the subcritical
current thermal-activation mechanism as was previously
reported by Albert et al. [9]. In addition our data reveal
for the first time a supercritical region where a linear
dependence of the switching speed on current amplitude
is seen. This is a unique attribute of the spin-transfer
process as it reflects angular momentum conservation.

The low impedance and small output signal in these
devices make high-speed transport measurement non-
trivial. All lithographically fabricated devices for observ-
ing this effect are of the current-perpendicular (CPP)
spin-valve type, with low junction resistance (about
1–5 �), and small magnetoresistance (MR) changes
(around 3%–5%). The resulting MR signal is small,
typically <1 mV. Dynamic calculations (see, for ex-
ample, Ref. [8]) give the generic time scale of the reversal
0031-9007=04=92(8)=088302(4)$22.50 
tion of the thin-film nanomagnet. This places the zero-
temperature switching time on the order of 1–10 ns.

CPP junctions with a Co=Cu=Co stack are used.
Junctions are fabricated using electron beam lithography,
either through a direct etch process similar to that in [7],
or using a nanostencil substrate [14]. The junction re-
ported here is designed to be about 0:05� 0:10 �m2 in
size, and the free-layer cobalt is 30 
A thick. All mea-
surements were performed at ambient temperature. The
current-voltage (IV) curve was measured using a pair of
Agilent 3458 voltmeters. Each IV curve is taken in about
100 sec. Figure 1(a) is a plot of the calculated dynamic
resistance of a typical sample. The average resistance for
this sample was 3:7 � and the MR is about 4%. Hence,
2004 The American Physical Society 088302-1
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FIG. 2. A set of measured amplitude-dependent reversal
traces. The response is normalized to vary from 1 to �1, which
corresponds to a change in �R of 0:1 �. The pulse current
values are uniformly spaced and vary from 8.31 to 12.71 mA.
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FIG. 3. The dots plot the current dependence of the experi-
mentally measured reversal rate 1=
decay, extracted from data
as shown in Fig. 2. The linear intercept along the I axis gives
the zero-temperature threshold current Ic0. The two lines in-
dicate the results of different types of micromagnetic models of
the reversal rate.
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the common mode signal is 25 times larger than the
magnetoresistance signal.

A special pulse sequence was used. Figure 1(b) plots
the difference between the measured voltage and a
straight line vs the measured current. The measurement
of the reversal time is done by alternately applying two
pulse sequences, the ‘‘signal’’ and the ‘‘background’’
sequence. The sample is dc biased at the current that
corresponds to points H (home) or B (background). For
the signal sequence, a 1 �s long pulse is applied to place
the sample at point R (reset). This forces the sample to
be at point H after the pulse is removed. Second, a 300
(or sometimes a 30) ns pulse of varying amplitude is
applied to metastably place the sample at point P (pulse).
If the pulse is long and big enough, the sample will
switch to point S (switched). During this sequence, the
voltage across the sample is recorded using the
Tektronix TDS6604 oscilloscope. The oscilloscope has
a bandwidth of 6 GHz. The background sequence is taken
in exactly the same manner as the signal sequence, except
that the reset pulse is omitted. When the sample is current
pulsed to be close to or always switching, the lack of a
reset pulse assures that the sample is moving from point S
to point B during the background sequence. The differ-
ence between the average voltages recorded between the
two pulse sequences represents the magnetization reversal
when the sample is biased between points P and S. We
typically average about 10 000 traces in groups of 500 sig-
nal and background traces. During any one pulse realiza-
tion, the sample will reverse at some point in time at a
time scale much less than 300 ns. The measured results
reflect the probability of being switched as a function of
time averaged over many pulses.

Figure 2 plots the magnetization reversal time as a
function of the pulsed current. We have measured about
a hundred of these types of curves on over 20 samples. We
estimate that the temperature rise of the sample from
Joule heating during the measurement is less than 20 K.
The baseline of the switched state is not completely flat
because of the ac coupling used during the measurement.
The fine ripple on the traces is coherent noise from the
measurement system.

A switching time 
 can be extracted from data such as
shown in Fig. 2. A model-independent way is to extract a
time necessary for data in Fig. 2 to decay a given per-
centage. Alternatively, it can be obtained from the data
by fitting each trace to an exponential decay and extract-
ing the decay constant. The dependence of 
decay on
pulsed bias current obtained using an exponential fit is
shown in Fig. 3.

Two points are noted for the data shown in Fig. 3. First,
at the high-speed limit, the dependence of 
�1 on bias
current I is linear. Second, in the subthreshold, large-

regime, this linearity gives way to a curved onset. We
show below that the linear 
�1 vs I dependence stems
from spin-transfer angular momentum conservation, and
the curved onset relates to thermal activation. Both can be
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adequately described by the spin-transfer dynamics with
thermal noise. In addition, the threshold current observed
in Fig. 3 is about 11 mA for the threshold corresponding
to the right-side step of Fig. 1 which reads only about
4.5 mA. The difference between these two values lies in
the vastly different time scales of the two measurements.

The dynamics of magnetization reversal have been
described using the LLG equation [15] modified to in-
clude the spin-transfer excitation [1–8]. In the simplest
limit, consider a monodomain nanomagnet with a mag-
netic moment m: a charge current I spin polarized in the
direction ns and with a spin-polarization factor � passes
through the nanomagnet, depositing a torque of � �
��� �h=2em2�I�ns �m� �m. The modified LLG equa-
tion can be written as
088302-2
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where � � 2�B= �h is the gyromagnetic ratio, and Hs �
��I �h=2em��ns represents the contribution from spin
transfer. Should there be other features in the potential
energy landscape, the first term of m�H in Eq. (1) can
be replaced by the energy function in the form of [8] m�
H ! �nm � rU, where U is the full energy potential the
magnetic moment experiences.

Equation (1) in the presence of both uniaxial and easy-
plane anisotropy fields of Hk and 4�Ms gives approxi-
mately a linear dependence between the switching time

�1 and the bias current I. Similar to the results shown in
Ref. [8],


�1 �
��

ln��=2�0�
�H �Hk � 2�Ms�	�I=Ic0� � 1


�
���B=e�

m ln��=2�0�
�I � Ic0�; �I > Ic0�: (2)

Here �0 is the initial angular deviation of the magnetic
moment from its easy axis, and Ic0 � �1=���2e= �h� �
�m�H �Hk � 2�Ms� is the zero-temperature threshold
current for spin-transfer-induced magnetic reversal. This
result reflects conservation of angular momentum and is
the origin of the linear slope at high bias current observed
in Fig. 3.

The effect of a finite temperature is twofold. First, it
creates a thermally distributed initial value �0. This for
I � Ic0 has the effect of giving a thermally distributed
switching time 
, the ensemble average of which pre-
serves the linear dependence of 
�1 in �I � Ic0� but re-
scales the prefactor. Second, in the subcritical region
I < Ic0, finite temperature gives a finite probability for
thermally activated switching, which requires a LLG
equation that includes thermal perturbation.

To describe the effect of temperature, one follows the
approach of Brown [16] and Grinstein et al. [17] in adding
a Langevin random field HL to the magnetic field H. The
Langevin field HL relates to the system temperature as
HL;i �

������������������������
2�kBT=�m

p
Iran;i�t� (i � x; y; z), where Iran�t� is a

Gaussian random function with the first two moments of
hIran�t�i � 0 and hI2ran�t�i � 1. The x, y, and z components
each have their own uncorrelated Iran�t�. Equation (1) can
then be discretized and numerically integrated.

A special case of Eq. (1) is when H and Hs are col-
linear, that is, H � Hns, and Hs � Hsns. In this case,
one can write Eq. (1) as�

1

�

�
dm
dt

� m�

�
H�

�
~��
m

�
m�H

�
; (3)

where a new effective LLG damping coefficient ~�� is
introduced so that ~�� � �1�Hs=H��, which explicitly
reveals the role of spin-transfer excitation Hs: it modifies
the effective damping, and when Hs=H <�1, ~��< 0, the
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system amplifies, rather than damps, any disturbance
from equilibrium.

Furthermore, if one introduces a fictitious temperature
~TT such that ~�� ~TT � �T, one can rewrite Eq. (3) with a
consistent set of parameters both for the Langevin term
and for the effective damping:(

�1��
dm
dt � m� 	�H�HL� � � ~��m�m�H
;

HL;i �
������������������������
2~��kB ~TT=�m

p
Iran;i; �i � x; y; z�:

(4)

Equation (4) is equivalent to having a nanomagnet with
damping ~�� and at temperature ~TT, which can be translated
into a simple thermal-activation picture of 
 �

0 exp�E=kB ~TT�. Here 
 is the thermal-activation lifetime,

0 is the inverse of the attempt frequency of the nano-
magnet, and E is the actual barrier height of the nano-
magnet as determined by its size, shape, applied field
strength, and intrinsic magnetic anisotropy environment.
For a thin-film nanomagnet with uniaxial and easy-plane
anisotropy only, one may write E � E0�1� ha�

2, where
ha � H=Hk with Hk being the easy-axis magnetic anisot-
ropy field as determined by the shape anisotropy of the
nanomagnet, and E0 � �1=2�mHk.

The lifetime for activated reversal is controlled by
the spin-transfer current I through ~TT � T=
	1� I�� �h=2em�H�
. This gives an effective rever-
sal threshold current of Ic � �1=���2e= �h���mH� �
	1� �kBT=E�ln�
=
0�
. Comparing this with the zero-
temperature spin-transfer threshold current of Ic0 �
�1=���2e= �h��m�H �Hk � 2�Ms� derived in Ref. [8],
one sees that the effect of thermal activation is to rescale
the threshold current by a factor of 	1� �kBT=E� �
ln�
=
0�
. In general one may write Ic � Ic0	1�
�kBT=E� ln�
=
0�
. Therefore, in the thermal-activation
region �I � Ic0�:


�1 � 
�1
0 exp	��0�1� ha�

2�1� I=Ic0�
 (5)

in which �0 � E0=kBT. This result agrees with the gen-
eral theoretical conclusion obtained by Li and Zhang [18]
using non-conserving-force thermodynamics and is also
consistent with the current dependence observed by
Urazhdin et al. [10].

Equations (2) and (5) describe the two asymptotic
limits of 
�1 vs I for I � Ic0 and I � Ic0, respectively.
They can be readily compared with data such as those
shown in Fig. 3.

In between the two asymptotic limits of Eqs. (2) and
(5), the dependence of 
�1 on bias current I can be
calculated by numerically integrating Eq. (4). There are
three essential adjustable parameters for determining the
numerical calculation: the LLG damping coefficient �,
the spin-polarization factor �, and the barrier-to-
temperature ratio � � �0�1� ha�2�1� I=Ic0�.

In Fig. 4 the experimental switching time 
�1 is com-
pared with a monodomain calculation. A set of numeri-
cally calculated switching times for such a monodomain
nanomagnet at different bias-current levels are shown as
088302-3
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FIG. 4. Comparing model calculation with experiment.
Points are data. Model calculations assume a junction size of
0:05� 0:10 �m2 � 30 
A, with Ms � 1440 emu=cm3 for co-
balt; � � 0:0326, T � 300 K, � � 0:5. Thick solid lines are
numerical simulation results at different values of ha as in-
dicated on the plot. Dashed lines are from the analytical
expression Eq. (5) for subcritical thermal activation using ha �
�0:3, �0:5, and �0:6, respectively.
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solid lines in Fig. 4. In the set of numerical simulations
presented in Fig. 4, we computed results for different �
by varying the values of ha, while keeping the zero-field
barrier height E0 � 120kBT as one would expect from the
shape anisotropy of a single cobalt thin-film nanomagnet
of the size 0:05� 0:10 �m2 by 30 
A thick. From data
shown in Fig. 4, the experimental data agree best with
numerical results with ha between �0:3 and �0:4.

A similar conclusion is reached by comparing the
subcritical thermally activated switching using Eq. (5).
Assume 
0 � 10�9 sec, 
 � 10�2 sec for dc IV measure-
ments; from the intercept of the linear portion of 
�1 such
as shown in Fig. 3 we have the threshold Ic0 � 10 mA,
and from Fig. 1, the dc threshold is I � 4:5 mA. These
and Eq. (5) give �0�1� ha�

2 � 29. For �0 � 120, this
gives ha � �0:5, close to the numerical simulation result.

Further numerical work involves a full micromag-
netics simulation including the STI excitation M�
M� S, and perhaps even with the possibility of including
an STI exchange field term. Figure 3 shows two types of
predictions for the 1=
decay or the reversal rate at T �
300 K. Here we have added a term to the standard micro-
magnetic LLG equation (in MKS units) of the form
dM=dt � ����0=jMj�M�M� S [19]. Also we have
simulated the STI exchange term, i.e., the M� S term.
In this case we have added a magnetic field term of the
form S � $Jns to the usual LLG equation. This is the
effective magnetic field from the STI exchange interac-
tion, and it appears in both the M�H and the M�
M�H terms in the LLG equation. To properly predict
the finite temperature behavior of the sample, we have
used the methods described in Ref. [17]. The data plotted
088302-4
in Fig. 3 match exactly the conditions of the experiment,
including simulating the reversal hundreds of times to
extract the average probability of reversal vs time. Here
we used the parameter $ as adjustable to account for the
unknown value of the spin polarizations and the angle
dependent spin transfer. To that extent, we have adjusted $
so that the simulated zero-temperature critical current
matches the measured value. In these simulations we
have used values of $ of 5 and 13 nm for the M �
M� S and M� S terms, respectively. So the comparison
between the measurements and the simulations is to be
made in the slope of the curves. It is clear from the figure
that the predictions using the M�M� S term fits the
measured data well and the M� S term does not.

We thank R. A. Carruthers, J. M. E. Harper, M. J.
Rooks, and C.T. Black for assistance.
*Present address: Hitachi San Jose Research Center, 650
Harry Road, San Jose, CA 95120, USA.

[1] L. Berger, J. Appl. Phys. 49, 2156 (1978).
[2] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
[3] Y. B. Bazaliy, B. A. Jones, and S.-C. Zhang, Phys. Rev. B

57, R3213 (1998).
[4] M. Tsoi, A. G. M. Jansen, J. Bass,W.-C. Chiang, M. Seck,

V. Tsoi, and P. Wyder, Phys. Rev. Lett. 80, 4281 (1998).
[5] E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie, and

R. A. Buhrman, Science 285, 867 (1999).
[6] J. Z. Sun, J. Magn. Magn. Mater. 202, 157 (1999).
[7] J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers,

and D. C. Ralph, Phys. Rev. Lett. 84, 3149 (2000).
[8] J. Z. Sun, Phys. Rev. B 62, 570 (2000).
[9] F. J. Albert, N. C. Emley, E. B. Myers, D. C. Ralph, and

R. A. Buhrman, Phys. Rev. Lett. 89, 226802 (2003).
[10] S. Urazhdin, N. O. Birge, W. P. Pratt, Jr., and J. Bass,

Phys. Rev. Lett. 91, 146803 (2003).
[11] M. Tsoi, A. G. M. Jansen, J. Bass, W.-C. Chiang, V. Tsoi,

and P. Wyder, Nature (London) 406, 46 (2002).
[12] S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley,

R. J. Schoelkopf, R. A. Buhrman, and D. C. Ralph,
Nature (London) 425, 380 (2003).

[13] A.V. Nazarov, H. S. Cho, J. Nowak, S. Stokes, and
N. Tabat, Appl. Phys. Lett. 81, 4559 (2002).

[14] J. Z. Sun, D. J. Monsma, M. J. Rooks, and R. H. Koch,
Appl. Phys. Lett. 81, 2202 (2002).

[15] E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics
(A. Wheaton & Co. Ltd., Exeter, 1981), Pt. 2, Chap. 7,
p. 285.

[16] W. F. Brown, Phys. Rev. 130, 1677 (1963).
[17] G. Grinstein and R. H. Koch, Phys. Rev. Lett. 90, 207201

(2003).
[18] Z. Li and S. Zhang, cond-mat/0302339.
[19] Here M and S are the continuous-medium equivalents (in

MKS units) of m and Hs (in cgs units). The magnitude of
S is proportional to the current density J in the form of
S � $Jns in MKS units. It is the continuous-medium
equivalent of Hs � ��I �h=2em��ns.
088302-4


