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Bifurcation Analysis of Liesegang Ring Pattern Formation
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Bifurcation analysis is introduced to a prototype Liesegang ring (LR) model to explain pattern
formation as an instability of a propagating plane reaction front. A theoretical criterion for the onset of
patterning is derived and numerically tested. The uneven spacing law of LR bands is explained as a
consequence of the time varying velocity of the moving reaction front. Suggestions for controlling
pattern formation are provided.
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tion to derive a theoretical criterion that can clarify the
onset of this phenomenon. Numerical simulations are

value Ks, as has often been previously assumed, e.g., in
Refs. [5,10]. With these assumptions, the form of the
Patterning of materials is desirable for the devel-
opment of devices with applications ranging from electro-
optics and photonics to microreactors and biosensors.
Most of the current techniques for materials patterning
rely on top-down processing by removing material from
predetermined locations. Bottom-up strategies such as
self-organization routes are also intensively pursued.
Understanding the mechanisms driving self-organization
is of high interest and can impact the evolving area of
nanotechnology.

One of the best-known mechanisms of materials pat-
terning is based on the Liesegang rings (LR) mechanism
[1]. LR patterns or bands typically form when a soluble
reactant diffuses either from the center or the periphery
of a medium uniformly filled with the second soluble
reactant to produce an insoluble substance. In most ex-
periments, bands obey an uneven spacing law when the
ratio of the positions of consecutive bands tends to a
constant value.

Despite intensive theoretical work devoted to LR for-
mation, e.g., Refs. [2–8], there remain a number of ex-
perimental observations that have not been explained. As
an example, patterns form only under certain conditions,
but the reason is poorly understood. While prenucleation
models [2,9] can explain the spacing law, a numerical
solution of the complete diffusion-reaction model does
not even predict bands (see [10] and references therein).
Furthermore, the spatial periodicity of bands of nano-
crystalline TiO2 in mesoporousVycor [11], which is either
nearly constant or obeys the aforementioned spacing law
under different conditions, cannot be easily rationalized.
Development of theory can be invaluable in understand-
ing the onset of LR pattern formation and in creating
strategies for experimental control.

In this Letter, we study LR pattern formation using
nonlinear systems theory. In particular, we cast for the
first time the LR pattern formation problem as an insta-
bility of a spatially inhomogeneous traveling wave solu-
0031-9007=04=92(8)=088301(4)$22.50 
then used to qualitatively verify theoretical predictions.
Finally, comparisons to experiments and suggestions for
controlling LR pattern formation are made.

An analysis is performed for a prototype LR model
consisting of two parallel reactions

A� B!
k1 S and A� B !

S;k2 S: (1)

The first reaction converts reactants to form a nucleus S,
once some critical concentration has been reached. The
second reaction depletes the reactants via growth, after a
nucleus has formed. Because of its surface area depen-
dence, the second reaction is typically autocatalytic
in nature. This is a critical issue regarding LR pattern
formation.

The dimensionless governing equations for species A,
B, and S are, respectively,
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� �f�y1; y2; z�: (4)

The following dimensionless quantities are used: y1 �
CA=C0

A, y2 � CB=C0
B, z � CS=C0

B, D � DB=DA, � �

C0
A=C

0
B, t � t0DA=L

2, and x � x0=L. Here Ci stands for
concentration of species i, Di for diffusivity, and x0; x and
t0; t are the real and dimensionless length and time coor-
dinates, respectively. Initially species B is in uniform
concentration, C0

B, in the entire domain 0 � x0 � L,
whereas A and S are not present. Zero-flux boundary
conditions are applied to both species A and B at x0 �
L, whereas the concentration of A at x0 � 0; C0

A is as-
sumed to be constant. Finally, we assume that nucleation
occurs when the product CACB exceeds some critical
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P H Y S I C A L R E V I E W L E T T E R S week ending
27 FEBRUARY 2004VOLUME 92, NUMBER 8
dimensionless reaction function f is f � �y1y2�H�y1y2 �
yc� � �z��, with � > 0, � � k1C

0
BL

2=DA, � � k2C
0
B=k1,

and yc � KS=C0
AC

0
B.H is the Heaviside step function. The

key parameters are the critical supersaturation yc, the
ratio � of autocatalytic growth and nucleation rate con-
stants, and �.

Numerous simulations of (2)–(4) show distinct deposi-
tion modes. Examples are shown in Fig. 1. In one growth
mode, termed frontal propagation [panel (a)], a continu-
ous deposit forms as a result of a concentration wave
propagating through the entire substrate. In another
growth mode [panel (b)], termed quasiperiodic, bands
form from the beginning [near the left boundary of
Fig. 1(b)]. Finally, quasiperiodic deposition often starts
after some induction time, i.e., a mixed mode of frontal
growth at the beginning followed by quasiperiodic
growth at longer times has also been observed (see Fig. 3
below for examples of this mode).

Simulations indicate that LR bands appear only when
both yc and � are nonzero and sufficiently large. The
effect of the critical concentration is expected, and it is
consistent with Ostwald’s nucleation theory [2]. However,
it is interesting to note that there appears to be a criticality
associated with �. Our simulations indicate that the fron-
tal growth gives place to quasiperiodic deposition when
the autocatalytic reaction is sufficiently faster than the
nucleation step. Theoretical analysis is employed to ex-
plain these observations.

We start from the frontal growth mode and consider a
time interval between some initial moment and the mo-
ment when deposition occurs near the end of the domain.
In this case the concentration profiles y2�x; t� (reactant B)
and z�x; t� (deposit S) have traveling wavelike features;
i.e., as time increases the profiles translate along the x
coordinate [Fig. 1(a)]. Unlike real traveling wave solu-
tions, these waves move with nonconstant, slowly varying
velocity !�t�. It is well-known that !	 �=

��
t

p
, where � is

some nonlinear function of initial concentrations C0
A; C

0
B

and diffusion coefficients DA and DB (e.g., [4,12]).
Nevertheless, simulations show that each of these waves
with instant velocity !�t� is asymptotically close (except
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FIG. 1 (color online). Deposit and species B concentration
after some time depicting (a) frontal deposition (� � 1) at
times t � 0:035, 0.055, and 0.075 (from left to right) and
(b) quasiperiodic deposition (� � 10). The other parameters
are � � 5, � � 370:4, � � 1, D � 0:11, and yc � 0:15.
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for translation) to the real traveling wave solution y2 �
Y2�x�!�t���, z � Z�x�!�t��� of
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� �F�y2; z; t�;
@z
@�

� �F�y2; z; t�;

(5)

where t is a parameter, and !�t� is the constant front
velocity for this solution corresponding to fixed parame-
ter t. Equation (5) is subject to boundary conditions y2 �
y�, z � z� at x! �1; y2 � 1, z � 0 at x! 1 where
0 � y� < 1 and z� > 0 are constant. The function
F�y2; z; t� � f�y1�y2�x; t��; y2�x; t�; z�x; t�
 is determined
by the solution of (2)–(4) at this fixed t; i.e., since
y2�x; t� is monotonic, we regard x as a function of y2
and rewrite function y1�x; t� in terms of the independent
variable y2, namely, y1�x; t� � y1�y2; t�. We can construct
such a function numerically for each fixed value t. So (5)
is obtained for y2 and z only and can be solved starting
from initial functions y02 � y2�x; t� and z0 � z�x; t� which
are the solution of (2)–(4) at the same t. Now � is the time
variable. Simulations reveal that the solution of (5) is the
same pair of functions y2�x; t�; z�x; t�, which move along
the x axes with velocity !�t� as � increases. Thus, the
solutions of (2)–(4), y2�x; t� and z�x; t� [not y1�x; t�], may
be seen as quasistationary states (QSS) in the transition
from an initial to a final state.

The resulting growth mode depends on the character of
these intermediate states. A similar phenomenon is
known for the time evolution of autocatalytic processes
[13]. In particular, for the cubic autocatalysis with cata-
lyst decay, the concentrations of reactants tend to an
oscillatory motion around their quasistationary values
when the latter become unstable. Unlike the autocatalyis
problem, here the stability of traveling waves needs to be
analyzed. The frontal growth mode exists as long as the
traveling waves are stable. Our aim is to find a criterion
for their stability.

Figures 2(a) and 2(b) show the front position and
velocity, respectively, vs time for the cases depicted in
Fig. 1. Under some conditions (� � 1), a wave with al-
most constant speed propagates through the substrate.
Increase of the autocatalytic reaction rate (� � 10)
leads to instability of the QSS and to quasiperiodic
growth mode.

We employ the QSS hypothesis to analyze the growth
modes and the transition from frontal propagation to
quasiperiodic deposition. This hypothesis holds in the
case of strong concentration gradients. Also the function
F must satisfy some conditions in order for the asymp-
totic correlations y2�0; t� � y�, z�0; t� � z� and y2�1; t� �
1, z�1; t� � 0 to hold at the ends of the domain 0 � x � 1.
Simulations indicate that they hold when the kinetic rate
constants are large enough. Thus below we theoretically
focus on the case where �� 1.

We examine first the case where the autocatalytic step
in (1) is absent (� � 0) and the critical supersaturation
is yc � 0. We consider Eqs. (2) and (3) only and the
088301-2
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FIG. 2. Front position (a) and front velocity (b) for the two
deposition modes of Fig. 1.
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quasistationary solution is the traveling wave solution of
the first of Eqs. (5). It is known [14] that this solution
exists, is unique (except for translation), and is stable if
the function F�y2; t� satisfies some conditions. It follows
from the analysis of Eqs. (2) and (3) that these conditions
hold for the function F. For yc � 0, the left boundary
condition is y� � 0, z� � 1; for yc > 0, it is y� > 0,
z� � 1� y�, where y2 � y� is determined from the
equation y1�y2�y2 � yc. Thus in the absence of the auto-
catalytic reaction (� � 0), frontal deposition takes place
even when a critical supersaturation exists yc > 0. Our
analysis demonstrates that Ostwald’s assumption [2] of
discontinuous nucleation is necessary (but not sufficient)
for LR pattern formation and explains the apparent para-
dox discussed in [10], i.e., why the full diffusion-reaction
model cannot predict bands.

Next we consider the case where both autocatalysis and
nucleation occur, i.e., yc > 0 and � > 0. It is interesting
to note an analogy between this behavior and the com-
bustion of condensed systems. Experiments show that the
velocity of flame propagation exhibits periodic pulsation
for some conditions. Furthermore, the burned samples
have a layered structure normal to the flame front.
Formally the model of these processes has the form of
Eqs. (5) and was analyzed in detail in [15] using the
narrow reaction zone approximation. It was assumed
that the chemical reaction occurs at the front, say at
" � 0, where " � x����; t� is the moving coordinate
system and x � ����� is the coordinate of the nonsteady
moving reaction front. The function �F�y2; z; t� is ap-
proximated as �F�y2; z; t� 	  �y2; t�$�"�, where $�"� de-
notes the Dirac delta function. Linear stability analysis of
Eqs. (5) shows [15] that its solution is unstable for % >
%c � 2�

���
5

p
, where % � � 0

y2�y
0
2�0�; t�=!�t�, and y02�"�

is the steady solution of (5) in the narrow reaction zone
approximation [���; t� � �!�t�� for a steadily propagat-
ing reaction front, y02 � 1� e�!"=D for " > 0, and y02 �
0 for " < 0]. The analysis in [15] shows that a Hopf
bifurcation occurs, giving rise to a stable time periodic
traveling wave solution that leads to a spatial pattern in
the x domain.

In our case the function F is not an explicit function of
y2 but is the result of the solution of the model (2)–(4).
However, we can still analyze the effect of parameters on
088301-3
the stability of the traveling wave solution of Eqs. (5). We
apply the result of [15]. To obtain an expression for the
source strength  , we employ an asymptotic analysis with
respect to ��1 � 1. The method of analysis is similar to
that used in [16]. The function F can be written as
F�y2; z; t� � F1 � F2, where F1 � �y1�y2�y2H and F2 �
��y1�y2�y2z (� � 1). In our specific system, the narrow
reaction zone implies that in front of the reaction front
(" > 0) nucleation happens and F � F1, whereas behind
the front (" < 0) only autocatalytic growth occurs; i.e.,
F � F2.

We consider Eqs. (5) in a moving coordinate system
and introduce a stretched coordinate (' � �") inside the
reaction zone. Furthermore, we introduce the outer and
the inner expansions of the functions y2�"; ��; z�"; �� and
!�t�;���; t� with respect to the small parameter ��1.
Substituting the inner expansions into Eqs. (5), expanding
the nonlinear terms F1 and F2 in powers of ��1,
and matching with the outer solutions, we obtain for
the lowest order approximation  �y2�0; ��; t� �
f2�Dyc����y��t� � y2�0; �����y�t�
g1=2 and  �0; t� �
f2�Dyc���y��t� � �y�t��g1=2 � !�t�, where �y � y� �
y�, with y�; y� (y� > y�) being the solutions of the
equation y1�y2�y2 � yc. Then the result of [15] implies
that instability happens when a parameter % becomes

% � �D�yc�=!2�t� � KSk2DBt0=�2DA > 2�
���
5

p
: (6)

The second equality is obtained for the case when the first
reaction in (1) is considered fast. Then the dimensional
front velocity, u�t0� � !�t�DA=L, is u�t0� � �

������������
DA=t0

p
[4].

Equation (6) shows explicit dependence on t0. It is the
main theoretical result of our analysis. Fast autocatalytic
kinetics and large values of critical supersaturation are
prerequisites for band formation for large � and strong
concentration gradients.

Equation (6) is consistent with simulation results
shown in Fig. 3 for various combinations of parameters.
These simulations confirm that when the dimensionless
parameters appearing in the numerator of Eq. (6) are
small (large), frontal propagation (quasiperiodic deposi-
tion) occurs. The speed of the traveling wave [denomina-
tor of Eq. (6)] is also essential in determining whether
instability occurs or not and explains the mixed growth
mode. Specifically, one can see from (2)–(4) and the
corresponding boundary conditions that, as time t in-
creases, the quasistationary velocity !�t� decreases due
to the diffusion time needed for A to reach the reaction
front [see also Fig. 2(b)]. Thus, there exists a time t� when
the value of !�t�� becomes small enough, so that (6) is
satisfied. Then the traveling wave becomes unstable. The
change of the speed of the traveling wave with time
explains then the presence of an induction time or length
of an initial ‘‘plug’’ zone, xp 	!�t��t�, giving rise to the
appearance of the mixed growth mode depicted in Fig. 3
for some parameters. Thus when the domain is thin
enough the growth mode may be frontal. The simulations
088301-3
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FIG. 3 (color online). Panels (a)–(c) show examples for ver-
ifying (6): (a) effect of critical supersaturation, (b) effect of the
rate constant of the autocatalytic step, and (c) effect of dif-
fusivity of reactant B. All curves in (a)–(c) correspond to the
same time, t � 0:07. Panel (d) shows the decrease of the plane
front velocity ! with time: at t � 0:06: ! � 4:4; % � 4:24; at
t � 0:075: ! � 3:8; % � 4:9; at t � 0:1: ! oscillates with t.
The parameters are � � 5, � � 370:4, � � 1 with (a) � � 4:5,
D � 0:11, (b) yc � 0:1, D � 0:11, (c) �c � 5, yc � 0:1, and
(d) � � 3:5, yc � 0:1, D � 0:11.

P H Y S I C A L R E V I E W L E T T E R S week ending
27 FEBRUARY 2004VOLUME 92, NUMBER 8
of Fig. 3(d) show that the transition to quasiperiodicity
happens for parameters satisfying nearly quantitatively
(6) (see the caption for details). Therefore, by controlling
the temperature and the initial concentrations, it could be
possible to alter the wave speed and thus the position
where patterns start to form and possibly the wavelength
of the patterns. An important point is that our theory
provides a means of computing the plug distance from an
estimation of the wave speed either experimentally or
from simulations under frontal propagation conditions.

The presence of criticality depicted by (6) rationalizes
why simulations for prenucleation models proposed in
[2,5] cannot produce LR bands (see [10]). Furthermore,
the form of the function f and its parameters are also
important in determining whether patterns form or not.

Next we draw analogies to condensed combustion sys-
tems. Combustion experiments and associated models
exhibit self-sustained oscillations, whereas deposition
obeys usually uneven spacing and time laws. The reason
is that the source function F�y2; z; t� and the instant
quasistationary front velocity !�t� are functions of
time, giving rise to qualitatively different behavior. It is
expected that, for a relatively time independent source F,
regular periodic patterns would develop. This may be
achieved experimentally in different ways. For example,
simulations by introducing ‘‘convective’’ terms into the
governing equations lead to more regular deposition pat-
terns (not shown). This implies that deposition in mate-
rials of larger pores will be affected by convection and
088301-4
may give more regular patterns. A similar effect was
described in [4] where an electrical field was applied to
an interdiffusion precipitation system. Also simulations
performed for a hypothetical reaction-diffusion model
[17] show formation of equidistant bands due to an auto-
catalytic chemical front of constant velocity.

Finally, we note that helical deposition structure was
described in [6]. It was shown that there exists a solution
corresponding to a spiral when the radius of the test tube
is large enough. Based on the criticality demonstrated
here, it may be possible to also explain the appearance of
such growth modes as a bifurcation from a plane reaction
front, when the test tube radius exceeds a critical value.
Future work is needed to explore this issue.

In summary, we have derived for the first time a
theoretical criterion for the appearance of LR patterns
using nonlinear systems theory and subsequently tested
via numerical simulation. Our theoretical analysis is ca-
pable of explaining different deposition modes including
frontal propagation, quasiperiodic, and mixed mode. The
periodicity of LR patterns is a function of the velocity of a
traveling wave, suggesting that well designed experi-
ments could be used to control LR formation. Our find-
ings can guide experiments in pattern formation driven by
diffusion-reaction instability.
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