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Entanglement Frustration for Gaussian States on Symmetric Graphs
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We investigate the entanglement properties of multimode Gaussian states, which have some
symmetry with respect to the ordering of the modes. We show how the symmetry constrains the
entanglement between two modes of the system. In particular, we determine the maximal entanglement
of formation that can be achieved in symmetric graphs like chains, 2D and 3D lattices, mean field
models and the platonic solids. The maximal entanglement is always attained for the ground state of a
particular quadratic Hamiltonian. The latter thus yields the maximal entanglement among all quadratic
Hamiltonians having the considered symmetry.
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ber of particles increases. For one-dimensional rings of
spin 1

2 particles [9] and clusters of d-level systems [10]
i
kl with 
 being the symplectic matrix (cf. [1]). Let us
consider a subgroup G of the permutation group and two
Classically as well as quantum mechanically the
global ordering or symmetry of a system often imposes
highly nontrivial constraints on its local properties. These
kinds of frustration effects lie at the heart of ordered
interacting systems, and physicists are faced with these
phenomena whenever dealing with lattice systems or
molecular structures. The present Letter is devoted to
investigate how the entanglement of two subsystems of
a larger system is constrained by such a global symmetry
for some particularly interesting class of states, the so-
called Gaussian states [1].

Gaussian states appear very naturally in several
branches of physics where entanglement plays a predomi-
nant role. The electromagnetic field in most quantum
optical setups, atomic ensembles interacting with such
fields [2], the motion of a collection of trapped ions, or the
low energy (bosonic) excitations of many interacting
systems can be very well described by these states. This
is due to the fact that quantum field theories can be, in
some regimes, approximated by Hamiltonians which are
quadratic in some bosonic operators, and thus in thermal
equilibrium as well as a result of the dynamics the
corresponding states are Gaussian. Thus, there is a grow-
ing interest in understanding the entanglement properties
of these states [2–7].

Our results quantify a very intuitive property of entan-
glement, which distinguishes it from the usual correla-
tions found in classical systems: one particle can share
entanglement only with a limited number of other par-
ticles [8], which in turn becomes smaller and smaller as
the amount of entanglement increases. Furthermore, the
entanglement that can be shared by a subset of particles
strongly depends on the symmetries of the multiparticle
state. For example, if we have a set of particles distrib-
uted on a lattice in a state with translational symmetry,
the maximal entanglement between any two nearest
neighboring particles should depend on the number of
spatial dimensions, and should decrease if the total num-
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quantitative investigations of this kind were started.
However, the involved optimization problems are highly
nontrivial such that up to now only a lower bound for the
achievable Entanglement of Formation (EOF) [11] is
known. In the case of Gaussian states, the situation can
become even more intriguing since for two modes only,
the amount of entanglement becomes unbounded. If we
consider three modes, and impose that the global state is
invariant under permutations, it turns out that the maxi-
mum EOF between any pair of modes becomes finite. By
increasing the number of modes and imposing different
symmetries to the global state, this quantity experiences
strong modifications. In this Letter we determine the
Gaussian state of N modes which gives rise to the maxi-
mal EOF between a selected pair of modes, for any N and
a large variety of symmetry groups.

From our analysis it also follows that the state for
which the maximum entanglement is generated under a
given symmetry corresponds to the ground state of
a particular Hamiltonian, quadratic in the bosonic
operators, which can be easily constructed. Thus we can
determine the Hamiltonian, invariant under a certain
symmetry group, that generates the maximum two-
mode entanglement for the physical systems mentioned
above.

Although we will consider rather general symmetry
groups, we will illustrate our results for groups which
can be associated to symmetric graphs [Fig. 1(a)], since
they give an intuitive geometric depiction of the group
and they are the ones that naturally appear in many
physical systems. For example, we will give the optimal
EOF for states that have the symmetries of a lattice in any
dimension, including square, cubic, hexagonal, and trigo-
nal lattices (Table I), or those of all platonic solids
(Table II).

Let �Q1; . . . ; QN; P1; . . . ; PN� :� R be the N conjugate
pairs of canonical operators characterizing N modes and
obeying the canonical commutation relations �Rk; Rl� �
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TABLE II. Maximal amount of nearest neighbor entangle-
ment Emax (measured in units of 10
2 ebits) and the respective
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FIG. 1. (a) Apart from chains, cubic lattices, and mean field
clusters there are several familiar symmetric graphs. Examples
are the five platonic solids (e.g., the dodecahedron), and hex-
agonal or trigonal lattices. (b): Maximal nearest neighbor
entanglement Emax (ebits) in a ring of N harmonic oscillators.
The dotted curves represent the envelopes corresponding to
Eq. (10).
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particular modes, k; l � N, for which there exists a group
element such that g�k� � l and g�l� � k (this condition
will be relaxed later on). We construct a Hamiltonian
operator as follows:

ĤH max �
1

4jGj

X
g2G

�Qg�k� 	Qg�l��
2 	 �Pg�k� 
 Pg�l��2: (1)

Let us denote by E0 the ground state energy and by 
0 the
corresponding ground state, which is a Gaussian state;
i.e., 
0 has a Gaussian Wigner function. The relation
between this Hamiltonian and the EOF will later on be
established by linearizing the expression for the latter.We
will show that the Gaussian state which is invariant under
G and which maximizes the EOF of the modes k and l is
exactly 
0 and that the corresponding EOF is Emax �
EF�E0�, where

EF��� � c	��� log�c	���� 
 c
��� log�c
����; (2)

and c���� :� ��
1=2 � �1=2�2=4. Hence, the ground state
of ĤHmax has maximum entanglement under all
G-invariant Gaussian states and conversely, among all
quadratic G-invariant Hamiltonians ĤHmax generates the
largest amount of entanglement at zero temperature.

The ground state of Hamiltonians of the form (1) can
be easily determined by resorting to symplectic space. We
TABLE I. Maximal nearest neighbor entanglement Emax (in
units of 10
2 ebits) for some infinite 2D and 3D lattices. Na is
the number of adjacent vertices.

Lattice Emax Na

Hexagonal (2D) 10.61 3
Square (2D) 6.31 4
Trigonal (2D) 2.69 6
Cubic (3D) 2.62 6
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define the covariance matrix (CM) of a Gaussian state �
as usual,

�kl :� hf�Rk 
 hRki�; �Rk 
 hRki�g	i; (3)

which must fulfill � � i
 [1]. Let us also introduce the
Hamiltonian matrix [5] corresponding to ĤHmax as H �
H	 �H
 with [12]

H� :�
1

jGj

X
g2G

Tg h
�k;l�
� T
1

g ; (4)

h�k;l��
:�

1

4
�jkihkj 	 jlihlj � �jkihlj 	 jlihkj��: (5)

The matrix H � 0 can be diagonalized by a symplectic
matrix S, H � SDST . Since tr��ĤH� � tr��H�, the ground
state energy of ĤH is given by

E0 � inf
�
tr��H� � inf

�
tr��D� � 2jj

���������������������������
H1=2

	 H
H
1=2
	

q
jj1: (6)

Since H has a null space, the CM �0 of the ground state

0 of ĤH is achieved in the limit �! 0 of �� :� S
1T

� S
1
� ,

where S� is the symplectic matrix that diagonalizes
H	 �1.

Before we prove the above statements, let us utilize the
results to analyze the maximum EOF for several interest-
ing symmetry groups. We will concentrate on groups
which can be associated with a symmetric graph.

Consider a simple undirected graph with N vertices,
characterized by an adjacency matrix A, which is such
that Akl � 1 if the vertices k and l are connected by an
edge, and Akl � 0 if there is either no edge or k � l. The
symmetry groupG of the graph contains all permutations
g, which commute with the adjacency matrix �A; g� � 0.
The graph is called symmetric if all edges as well as all
vertices are equal in the sense that every edge and every
vertex can be mapped onto every other one by an element
ofG. Examples of symmetric graphs are given in Fig. 1(a)
and Tables I and II. By utilizing this symmetry we can
simplify

H� �
1

jEj

X
�k;l�2E

h�k;l�� ; (7)
ground state energy (minimal EPR uncertainty) E0 for the five
platonic solids. Na is the number of adjacent vertices and N the
total number of nodes.

Platonic solid Emax Na N E0

Tetrahedron 19.74 3 4 �1=
���
2

p
�

Cube 19.74 3 8 �1=
���
2

p
�

Dodecahedron 11.12 3 20 1
30 �12	 5

���
2

p
	 2

���
5

p
�

Octahedron 10.75 4 6 1
6 �3	

���
3

p
�

Icosahedron 5.37 5 12 �1=
���
5

p
� 	 �1=

���
6

p
�
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where E � f�k; l�jAkl � 1g is the set of edges. Hence, the
sum in Eq. (1) runs over all edges which correspond
therefore to physical interactions between the adjacent
modes. By observing that �H	; H
� � 0 we can derive
the ground state CM (or the respective limit):

�0 �
�����������������
H
H


1
	

q
�

�����������������
H	H


1



q
: (8)

Note that when acting on two modes only, the ground state
of ĤHmax is the original singular Einstein-Podolsky-Rosen
(EPR) state. Moreover, since H
 has a Kernel containing
the vector �1; 1; . . . ; 1� the ground state of any ĤHmax will
always be singular and the maximal entanglement is thus
only attained exactly in the limit of infinite squeezing.

In the following we will apply the obtained results to
some examples of familiar symmetric graphs.

Chains and rings.—The simplest nontrivial example of
a symmetric graph is a ring of N nodes representing
translation and reflection symmetry. In this case the
operators H� have the form

H� �
1

4N
�21� �T 	 T
1��; (9)

where Tkl � �k;l	1modN is the cyclic shift operator.H� are
so-called circulant matrices [13], which can be diagonal-
ized simultaneously by a Fourier transform yielding

E0 �
1

N

XN
1

l�0

�������sin2�N l

��������
(

2
N cot

�
N ; N even;

1
N cot

�
2N ; N odd: (10)

Hence, the entanglement remains finite and is suppressed
in rings with an odd number of modes (see Fig. 1). It
approaches Emax � 0:30 ebits (E0 �

2
� ) in the limit N !

1. This value is comparable to the 0:29 ebits conjectured
for an infinite chain of spin 1

2 particles [9].
Cubic lattices.—The result obtained for the chain has a

straight forward extension to d-dimensional cubic lattices.
Imposing periodic boundary conditions (i.e., a lattice on a
torus) for a cubic lattice of Nd modes we get

H� �
1

4Nd

"
21�

1

d

Xd
a�1

�T�a� 	 T
1
�a� �

#
; (11)

where now T�a� is the shift operator acting on the ath of
d tensor factors, each corresponding to one of the dimen-
sions of the lattice (e.g., T�2� � 1 � T � 1 . . . ). Diago-
nalizing H� by a tensor product of Fourier transforms
leads to

E0 �
1

Nd

XN
l1�1

. . .
XN
ld�1

"
1


1

d2

 Xd
k�1

cos
2�
N
lk

!
2
#
1=2

; (12)

which goes to 1 (Emax ! 0) for d! 1, and is calculated
explicitly in Table I for the infinite two and three dimen-
sional cubic lattice.

Mean field clusters.—When every mode is connected to
every other one, i.e., when we have complete permutation
symmetry, then
087903-3
H� � �2N�N 
 1��
1��N 
 1�1� �E
 1��; (13)

where Ekl � 1, which leads to E0 �
�����������������������
�N 
 2�=N

p
. Hence,

the maximal entanglement decreases with the number N
of modes and vanishes as ��1=N2� logN in the limit
N ! 1. In fact, the same asymptotic behavior is obtained
for a cluster of qubits, for which the maximal amount of
entanglement (analytically calculated in [14]) is surpris-
ingly larger than in the Gaussian case.

Platonic solids.—The results for the graphs corre-
sponding to the three dimensional platonic solids can
be found in Table II.

All these examples indicate three different tendencies
for the maximal EOF: (i) Emax decreases with the number
of adjacent vertices. (ii) Emax decreases with the total
number of vertices. (iii) Emax is suppressed in loops
with an odd number of vertices, which give rise to addi-
tional frustration.

Let us now proceed to prove our main result.We denote
by � and � CM of the global state and the reduced density
operator for the modes k; l in whose entanglement we are
interested. The first CM must fulfill

� �
1

jGj

X
g2G

�Tg � Tg���Tg � Tg�T: (14)

The CM � of a two-mode subsystem can always be
written, up to local symplectic transformations S1;2, in
the standard form [3]

�S1 � S2���S1 � S2�
T �

�
nA kq
kq nB

�
�

�
nA kp
kq nB

�
: (15)

The fact that G contains by assumption an element which
maps k$ l immediately implies that nA � nB and S1 �
S2 � S. Hence, given a global CM we can always find
another one given by ��Ni�1S����

N
i�1S�

T , which is also G
symmetric, and such that � has the standard form (15)
with nA � nB �: n.

We are interested in maximizing the EOF of �. Since
nA � nB we can use the results of [6], which show that
this quantity is given byEF���, where the function EF has
been given in (2), which is a monotonically decreasing
function of the so-called EPR uncertainty �. Thus, max-
imizing the EOF is equivalent to minimizing �. This last
quantity is a highly nonlinear function of the parameters
n; kq; kp, and thus minimizing it with respect to all
possible global � looks to like a very daunting task. In
order to overcome this problem, the trick is to linearize
the expression of � by including an extra maximization
in the problem, i.e., writing

� � inf
s>0

tr



�
�
sh�k;l�	 �

1

s
h�k;l�


��
(16a)

� inf
s>0

tr



�

�
sH	 �

1

s
H


��
: (16b)

In the last step we have used that � is the reduced CM of
�, and Eq. (14).
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We show now that � must correspond to a pure state. If
a CM �m corresponds to a G-symmetric mixed state, it
can always be decomposed into a G-symmetric pure state
CM �p and a G-symmetric matrix M � 0 via �m � �p 	
M [15]. This decomposition can be interpreted as adding
classical Gaussian noise to �p [4]. Since this will cer-
tainly not increase the entanglement between any two
modes of the system, maximal entanglement will be
attained if the overall CM � corresponds to a pure state.

We can thus exploit the fact that every pure state CM
can be written as

� �

�
X XY
YX YXY 	 X
1

�
; (17)

with X > 0 and Y � YT [7]. Hence, the EPR uncertainty
(16a) becomes

� � inf
s>0
str�XH	� 	

1

s
tr��X
1 	 YXY�H
�: (18)

Maximizing the entanglement means minimizing � with
respect to X and Y under the constraint that they parame-
trize a G-symmetric CM. We can, however, drop this
constraint since the symmetry of H� will force the opti-
mal �0 to have the right symmetry. Moreover, �0 will be
the ground state corresponding to the Hamiltonian ma-
trix H � H	 �H
 since

�0 � inf
X;Y

� � inf
X
tr�XH	� 	 tr�X
1H
� (19)

� inf
�
tr���H	 �H
�� (20)

where we have first set Y � 0, since tr�YXYH
� � 0 and
then incorporated the infimum over s into that over X.
This completes the proof of our main result, since �0 is by
Eqs. (4) and (20) equal to the ground state energy E0 of
the Hamiltonian in Eq. (1).

By imposing fewer restrictions on the symmetry group
than requiring the existence of an element which inter-
changes k$ l, the maximal achievable EOF could grow.
However, the presented proof can be extended in a
straightforward manner to all symmetry groups with
Abelian commutant, including those of rings and cubic
lattices, without imposing reflection symmetry. The proof
can be found in the appendix of [16].

In conclusion, we have determined the maximal entan-
glement between two modes under the constraint that the
overall system is in a Gaussian state which has some
symmetry with respect to the ordering of the modes.
The result was derived by linearizing the entanglement
functional which permits to perform the maximization in
a simple way. We find that the maximal entanglement is
connected to the ground state of a particular quadratic
Hamiltonian which possesses the same symmetry as the
state. The state that maximizes the EOF is precisely the
ground state of such a Hamiltonian. The maximal entan-
glement turned out to be finite in all the discussed cases,
087903-4
and is even comparable to the values for spin 1
2 systems for

the case of rings (lower bound in [9]) and clusters [14].We
have shown how the entanglement decreases with the
number of spatial dimensions, and how it depends on
the geometry of the state. Finally, although we have
concentrated here on Gaussian states, we note that parts
of the presented techniques can be applied to finite di-
mensional systems as well—the maximal entanglement
is always related to the ground state energy of a specific
nearest-neighbor interaction Hamiltonian [17].
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