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Quantum-Classical Transitions in Lifshitz Tails with Magnetic Fields
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We consider Lifshitz’s model of a quantum particle subject to a repulsive Poissonian random
potential and address various issues related to the influence of a constant magnetic field on the leading
low-energy tail of the integrated density of states. In particular, we propose the magnetic analog of a
40-year-old landmark result of Lifshitz for short-ranged single-impurity potentials U. The Lifshitz tail
is shown to change its character from purely quantum, through quantum classical, to purely classical
with an increasing range of U. This systematics is explained by the increasing importance of the
classical fluctuations of the particle’s potential energy in comparison to the quantum fluctuations
associated with its kinetic energy.
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disorder-induced rounding of certain quantum phase
transitions [9].

grable, and strictly positive on some nonempty open sub-
set of Rd [14]. The impurity positions are independently,
The exponential distortion of van Hove singularities of
the (integrated) density of states (IDOS) near band edges
is a fundamental feature of disordered electronic systems.
The associated leading (band-edge) falloff of the IDOS is
commonly referred to as a Lifshitz tail (LT). For an un-
adulterated theoretical understanding of this phenome-
non, Lifshitz studied an idealized statistical model of a
quantum particle in three-dimensional configuration
space R3 subject to macroscopically many repulsive im-
purities which are distributed completely at random [1].
Within this model the (low-energy) falloff of the IDOS
originates in exponentially rare realizations of the ran-
domness with large impurity-free regions, where the
particle’s potential energy is solely due to the impurities
outside. It therefore depends on the range of the impuri-
ties. Lifshitz argued that all impurities of short range
create the same tail [universally given by (8) below
with d � 3]. A proof of this result turned out to be dif-
ficult [2–4]. It was achieved with the help of Donsker and
Varadhan’s celebrated large-deviation theorem for the
long-time asymptotics of certain Wiener path integrals
[2]. Shortly after, Pastur observed that the LT ceases to be
universal in case of long-ranged impurities, but rather
depends on details of the potential created by a single
impurity [3].

Apart from its obvious relevance to highly doped
semiconductors, the phenomenon of Lifshitz tailing is
of interest for a variety of other disordered systems. An
example is Brownian motion in random media for which
the long-time survival probability is related to the low-
energy behavior of the IDOS by Laplace transforma-
tion and a Tauberian theorem [2,5,6]. Another example
is the random-bond Ising model exhibiting Griffiths
singularities [7]. The basic large-deviation mechanism
responsible for the creation of LTs is also claimed to
be the reason for the suppression of superconductivity
in systems with magnetic impurities [8] and for the
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In the present Letter we report on new theoretical,
mostly rigorous results on the fate of LTs in a constant
magnetic field. Rigorous studies of Lifshitz’s model for a
two-dimensional configuration space R2 have already
revealed that the presence of a magnetic field brings about
remarkable changes in comparison to the nonmagnetic
case [10–13]. In R3 an additional feature comes into play:
apart from universal and nonuniversal LTs of purely
quantum and purely classical character, respectively,
there exists a wide class of LTs with coexistence of both
characters. They occur for impurities of intermediate
range. Our main goal is to develop the physical heuristics
behind these results for R2 and R3. Hereby the new facet
lies in both, the inclusion of a magnetic field and the
consideration of non-short-ranged impurities. Proofs for
the case R3 will be published elsewhere.

Model.—Lifshitz’s model concerns a spinless particle
with mass m > 0 and electric charge q � 0, which we
will suppose to move in d-dimensional Euclidean space
Rd. Its total energy is represented by a random
Schrödinger operator on the Hilbert space L2�Rd� which
is informally defined as

H�V� :�
1

2m

Xd
k�1

�
�i �h

@
@xk

� qAk

�
2
�V: (1)

Here 2� �h > 0 denotes Planck’s constant, �i �h@=@xk the
kth component of the canonical-momentum operator, and
Ak the kth component of a vector potential A:Rd ! Rd

describing a constant magnetic field of strength B � 0.
Repulsive impurities generate the Poissonian random po-
tential V:Rd ! R informally given by V�x� :�

P
jU�x�

p�j��, U � 0. For a fixed realization of the randomness,
the point p�j� 2 Rd stands for the position of the jth
impurity repelling the particle at x 2 Rd through a non-
random, non-negative single-impurity potential U:Rd !
R, which we assume to be integrable, square inte-
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identically, and uniformly distributed throughout Rd with
mean concentration % > 0 such that the probability of
finding J 2 f0; 1; 2; . . .g impurities in a region � � Rd

of volume j�j :�
R
� d

dx is given by Poisson’s law
exp
�%j�j��%j�j�J=J!. Denoting the corresponding
probabilistic (ensemble) average with an overbar, the
IDOS resulting from (1) at a fixed energy E 2 R can be
defined [15] as

N�E� :� hxj

E�H�V��jxi; (2)

in terms of Heaviside’s unit-step function 
. Thanks to
unitary invariance of the kinetic-energy operator H�0�
under magnetic translations and because of the Rd homo-
geneity of the Poisson potential, N�E� is independent of
the chosen x 2 Rd labeling the position representation.
By the decay of U at infinity the half-line 
"0;1
� R is
not only the set of growth points of the functionN:R ! R
but also coincides with the spectrum of H�V� almost
surely, that is, with probability one. Here "0 � 0 denotes
the ground-state energy of H�0�, which is zero for d � 1
and equal to the lowest Landau-level energy �hjqjB=2m for
d � 2 and 3.

Quantum-classical transitions.—At energies E # "0,
the particle will be localized [16] in a large region �0 �
Rd without impurities. If U is short ranged, its potential
energy in �0 is to a good approximation zero. By the
spatial confinement its kinetic energy is not smaller than
the lowest eigenvalue of H�0� when the latter is Dirichlet
restricted to �0. Lifshitz suggested that at low energies
N�E� is determined by the region �0�E� � Rd with the
smallest volume j�0�E�j for which the lowest Dirichlet
eigenvalue of H�0� coincides with the given E [17]. He
therefore proposed the following asymptotic formula [18]
for the leading low-energy falloff of the IDOS as E # "0

lnN�E� � ln Probf�0�E� is free of impuritiesg

� �%j�0�E�j (3)

if U is short ranged. If U is long ranged, the particle
inside �0 acquires a potential energy due to the long-
distance decay of potentials U generated by impurities
located outside �0, that is, in Rdn�0. Given the impurity-
free region �0, this potential energy is on average of the
order of magnitude

%
Z

Rdn�0

ddxU�x�: (4)

Supposing that U varies slowly on the scale of the par-
ticle’s de Broglie wavelength, the kinetic energy of the
particle inside �0 will still be given approximately by
the lowest Dirichlet eigenvalue of H�0�. Therefore, a
basic question is whether this kinetic energy, caused by
the spatial confinement to �0, dominates (4) or not as
j�0j ! 1. If yes, the LT has a purely quantum character
and is universally given by (3). If no, it, in general,
depends on details of the decay ofU and exhibits classical
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features. Moreover, if the quantum fluctuations related to
the kinetic energy can be neglected completely, the LT
has a purely classical character in the sense that

lnN�"0 � E� � lnNcl�E� (5)

as E # 0. Here

Ncl�E� :�
�
m

2� �h2

�
d=2
E� V�0��d=2

E� V�0��

��1� d=2�
(6)

is the (quasi-) classical IDOS [15,19] with � denoting
Euler’s gamma function.

Case B � 0. —It is instructive to briefly recall what
happens in the zero-field case. Here the isoperimetric
inequality of Strutt (�Rayleigh), Faber, and Krahn [20]
shows that balls have the smallest volume for a given low-
est Dirichlet eigenvalue of H�0�. But the volume j�0j of a
ball �0 whose associated lowest Dirichlet eigenvalue is
E0��0� can be inferred from a scaling argument:

E0��0� �
�d �h2

2m
j�0j

�2=d: (7)

Here �d is the lowest eigenvalue of the negative Laplacian
when Dirichlet restricted to a ball in Rd of unit volume,
for example, �1 � �2, �2 � ��20, with �0 � 2:404 . . .
being the smallest positive zero of the zeroth Bessel
function of the first kind, and �3 � �

2�4�=3�2=3.
Combining (3) and (7) one obtains Lifshitz’s landmark
result [1] for the leading low-energy falloff of the IDOS
as E # 0�� "0� if U is short ranged:

lnN�E� � �%
�
�d �h

2

2mE

�
d=2
: (8)

If U is long ranged in the sense that it has an (integrable)
algebraic decay proportional to jxj�� as jxj ! 1 with
some exponent � (>d), the potential energy (4) is propor-
tional to j�0j

1��=d. As j�0j ! 1, it is therefore negligible
in comparison to the kinetic energy (7) if and only if � >
d� 2. More generally, if the decay is faster than alge-
braic with exponent d� 2, the LT was proven [2–4] to be
universally given by (8). If �< d� 2 the total energy is
dominated by the potential energy and the LT has, in-
deed, a purely clasical character in the sense that (5) holds
[3]. Algebraic decay with exponent � � d� 2 therefore
discriminates between LTs of purely quantum and those
of purely classical character if B � 0. In this borderline
case, � � d� 2, coexistence of both quantum and clas-
sical behavior is expected [15].

Case B > 0. —What changes when a constant mag-
netic field is turned on? First of all, a magnetic field
of strength B introduces the length scale ‘ :�

���������������
�h=jqjB

p
and the energy scale �h2=2m‘2 ( � "0 for d � 2 and 3). Of
course, Eq. (3) continues to hold in the short-ranged
case. It is the shape and mainly the volume of the region
�0�E� through which the magnetic field enters. Physical
intuition suggests that an external magnetic field favors
086402-2
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localization effects. Hence, the energy of a particle which
is confined to some region is dramatically diminished in
comparison to the case B � 0. To discuss this in more
detail, it is helpful to consider first the (idealized) quan-
tum Hall situation with the particle and all impurities
confined to a plane R2 perpendicular to the magnetic field.

Case B > 0 and d � 2. —Because of the rotational
symmetry about the magnetic-field direction it is plau-
sible that balls in R2, that is, disks, still yield the smallest
area for a given lowest eigenvalue of H�0�. The under-
lying magnetic isoperimetric inequality was proven in
[20]. Moreover, the increase of the kinetic ground-state
energy E0��0� � E0�R

2� � E0��0� � "0 by spatial con-
finement to a large disk �0 � R2 with area j�0j is
asymptotically given by [11]

E0��0� � "0 � "0 exp

"
�

j�0j

2�‘2

1� o�1��

#
; (9)

where ‘‘little oh’’ o�1� tends to zero as j�0j ! 1. The
exponential dependence on the area j�0j is a consequence
of the fact that the circularly symmetric ground-state
wave function of the infinite-area kinetic-energy operator
H�0� for B > 0 is (in contrast to the case B � 0) square
integrable and even exponentially localized. For short-
ranged U a combination of (3) and (9) yields a power-law
falloff of the IDOS near the (almost sure) ground-state
energy "0 > 0 of H�V� in the sense that

lnN�"0 � E� � lnE2�%‘2 ��2�%‘2j lnEj (10)

as E # 0. This stands in sharp contrast to the exponential
falloff (8) if B � 0. Given (3), the difference is because of
the fact that the finite-area kinetic ground-state energy
[see (9) and (7)] approaches its infinite-area limit "0
exponentially if B > 0 but only algebraically if B � 0,
as the disk �0 is blown up to exhaust all of the plane R2.
Depending on whether the exponent 2�%‘2 in (10), which
is just the mean number of impurities in a disk of radius���
2

p
‘, is smaller or larger than 1, the IDOS exhibits a

rootlike or true power-law falloff. The resultant diver-
gence of the DOS dN=dE at "0 if 2�%‘2 < 1 should be
observable in suitable experiments. We note that in the
limiting case of point impurities [14] the lowest-Landau-
band approximation to N is known exactly [21] with a LT
(see also [22]) differing from (10).

A nontrivial proof of (10) was given by Erdős [11] forU
with compact support. Building on his result, Eq. (10) was
shown to hold for any U which decays faster than any
Gaussian at infinity [12]. In fact, this is plausible from the
heuristic point of view. When estimating the potential
energy of a particle in a large impurity-free disk �0 �
R2 by (4), it turns out to be negligible in comparison to
the increase of the kinetic energy given by (9) if and only
if U decays faster than any Gaussian. Conversely, if U
decays slower than any Gaussian, the LT is dominated
by the potential energy and hence of classical character
in the sense that (5) holds [10,12]. The discriminating
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decay of U for the quantum-classical transition is there-
fore Gaussian if B > 0 and not algebraic (as in the case
B � 0). In the borderline case of Gaussian decay quantum
and classical behavior coexist [12,13].

Case B > 0 and d � 3. —In contrast to the two-
dimensional situation, the presence of a constant mag-
netic field in R3 introduces an anisotropy. Here the
isoperimetric problem of finding those regions which
yield the smallest volume for a given lowest Dirichlet
eigenvalue of H�0� seems to be unsolved. It is natural to
assume that its solution is found among convex regions
which are axially symmetric about the magnetic-field
direction. Assuming right circular cylinders as the solu-
tion, one may argue as follows. For a large confining
cylinder D� I � R3 with base disk D � R2 and altitude
interval I � R parallel to the magnetic-field direction,
the increase of the kinetic ground-state energy
E0�D� I�—"0 is just a sum of two terms in accordance
with (9) and (7):

E0�D� I� � "0 � "0 exp
�
�

jDj

2�‘2

1� o�1��

�
�
�2 �h2

2mjIj2
:

(11)

As a consequence, among all right circular cylinders the
one (to be denoted as �0 � R3) which yields the smallest
volume for a given lowest Dirichlet eigenvalue of H�0�
can be inferred asymptotically from the equation

E0��0� � "0 � inf
jIj>0
E0���0=I� � I�� "0

�
�2 �h2

2m

�
2�‘2

j�0j
lnj�0j

2

�
2

1� o�1��: (12)

Inserting this result into (3), we conclude that for short-
ranged impurities the IDOS drops down to zero near the
ground-state energy "0 > 0 of H�V� according to

lnN�"0 � E� � �2�%‘2j lnEj
�
�2 �h2

2mE

�
1=2

(13)

as E # 0. The right-hand side (rhs) is the product [23] of
the rhs of (10) and (8) with d � 1, provided one notes that
% in (13) is the mean bulk concentration. The dominant
second factor may be attributed to the effective zero-
field motion of the particle parallel to the magnetic
field. A leading asymptotic behavior proportional to
E�1=2 lnE was also suggested [24] in case of point impu-
rities [14] for the DOS within the lowest-Landau-band
approximation. So far we do not have a complete proof
of (13), the magnetic analog of Lifshitz’s 40-year-old
result (8) (with d � 3). We have a lower bound [25] on
the IDOS, which coincides with the so-called optimal-
fluctuation formula [26] and has the same leading asymp-
totics as the rhs of (13). The asymptotics of our upper
bound [25], however, dismisses the logarithmic factor. To
sharpen the upper bound one should extend Erdős’s proof
[11] from d � 2 to d � 3.
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What changes if U is long ranged? The potential en-
ergy (4) of the particle inside �0 � D� I is of the same
order of magnitude as the sum of two terms

%
Z

R2nD
d2x?U?�x?� � %

Z
RnI
dxkUk�xk� (14)

containing D and I separately. Here we have introduced
marginal impurity potentials of the directions perpen-
dicular and parallel to the magnetic field, U?�x?� :�R

R dxkU�x?; xk� and Uk�xk� :�
R

R2 d2x?U�x?; xk�. As
jDj; jIj ! 1, each of the two terms of the potential en-
ergy in (14) competes with its corresponding term of
the kinetic energy in (11). As a consequence, apart
from LTs with either purely quantum or purely classical
character, there emerges a wide class of impurity poten-
tials U yielding LTs with coexistence of these charac-
ters. Of physical relevance in the context of screening of
charged impurities is the example in which U decays
proportional to expf��jxj=%�&
1� o�1��g as jxj �
�jx?j2 � x2k�

1=2 ! 1 with some decay length % > 0 and
some exponent & > 0. Here the potential energy coming
from Uk in (14) is negligible in comparison to the corre-
sponding kinetic energy in (11) as jIj ! 1. However, the
analogous assertion concerning the perpendicular direc-
tions as jDj ! 1 is true if and only if & > 2. In other
words, we expect (13) to hold as long as U decays faster
than any Gaussian. If &< 2, the LT was proven to be [25]

lnN�"0 � E� � ��%%2j lnEj2=&
�
�2 �h2

2mE

�
1=2

(15)

asE # 0. Like (13) it coincides with the product [23] of the
logarithms of corresponding tails for d � 2 and 1, as
follows from (5) (see [12]) and (8), respectively. It incor-
porates (through �h and %) both quantum and classical
features. For the borderline case & � 2 we conjecture in
analogy to Eq. (15) and Ref. [13] that the LT is given by
(15) with & � 2 and %2 replaced by %2 � 2‘2. To sum-
marize, in R3 Gaussian decay discriminates between
magnetic LTs with purely quantum and those with coex-
isting quantum-classical behavior.

A transition from the coexistence regime to the purely
classical one can be found, for example, within the class
of single-impurity potentials U with (integrable) alge-
braic decay proportional to jxj�� as jxj ! 1 with some
exponent � (>3 � d). Here the particle’s potential en-
ergy stemming from U? in (14) always dominates the
corresponding kinetic energy in (11). Since Uk decays
proportional to jxkj

2�� as jxkj ! 1, the second term in
(14) dominates its kinetic counterpart in (11) if and only
if �< 5. In the latter case, the LT was, indeed, proven to
have a purely classical character in the sense that (5) holds
[27]. Algebraic decay with exponent � � 5 (�d� 2)
therefore discriminates between magnetic LTs with co-
existing quantum-classical and those with purely classi-
cal character.
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