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Submonolayer Growth with Anomalously High Island Density in Hyperthermal Deposition
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We present a rate equation model for submonolayer island growth under conditions where hyper-
thermal deposition techniques such as low-energy ion deposition are employed to achieve smooth layer-
by-layer growth. By asymptotic analysis, we demonstrate that the model exhibits stationary behavior
with well-defined dynamic and growth exponents � and �, respectively, in the limit of small and high
detachment rates. We verify these predictions by using the particle coalescence simulation method. The
simulations reveal the existence of a relatively sharp transition regime with an increasing detachment
rate of adatoms from high values of the growth exponent � � 1 to much smaller values of � determined
by detachment and island diffusion processes. Our numerical results for the island size distribution
indicate an anomalously high number of small islands, in agreement with available experimental data.
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sity of small islands with size distribution which is also of
scaling form. The transition to this new region of growth
is relatively sharp with respect to the physical parameters

common single particle adatom processes in this case [6].
The reaction rate of aggregation is in this case taken to be
a homogeneous kernel K�i; j� � D0�i	� � j	��, where
Hyperthermal deposition (HTD) techniques have be-
come an important tool in improving and controlling the
properties and growth of thin films during deposition.
They include low-energy ion deposition (LEID) [1] and
ion beam assisted deposition (IBAD) techniques where
energetic ion beams with energies ranging from a few eV
up to a few keV are used. When the ratio of bombarding
ions to the deposited atoms is moderately low ranging
from 0.1% to 10%, thin films with improved smoothness
can be obtained under less stringent deposition conditions
than in ordinary molecular beam epitaxy [2,3].

In HTD it has been observed that island growth is in
striking contrast to ordinary thermal deposition: the
island density is larger, the average island size is smaller
[2,3], and distributions are considerably broader [1,3].
Various atomistic processes such as ion enhanced mobili-
ties, cluster dissociation [1], and defect creation [2,4]
have been suggested to explain this. However, in particu-
lar, in LEID it is a remarkable fact that the growth
properties do not seem to depend much on the details of
ion bombardment. With different deposition energies an
anomalously high density of small islands is observed
with very similar distributions [1]. This is unexpected,
since the number of additional detachment events due to
deposition is relatively low, and thus it is not obvious how
an anomalously high island density is maintained.

In this Letter we propose a simple rate equation (RE)
model for ion-assisted deposition. It demonstrates that in
systems where HTD maintains smooth submonolayer
growth the enhanced detachment of atoms together
with island mobility results in island growth with new
regular scaling properties and an anomalously high den-
0031-9007=04=92(8)=086103(4)$22.50 
and it occurs in a region which is easily accessible by
LEID or IBAD experiments. Our results are also in good
agreement with existing experimental data.

In HTD island growth is a manifestly reversible pro-
cess which is characterized by enhanced adatom detach-
ment [1,4]. Moreover, in growth of metallic films islands
may have substantial mobilities [5,6], which means that
the growth can be described by neglecting spatial corre-
lations between the growing islands [7–10]. This implies
that island growth with mobile islands and breakup
can be modeled using REs for a reversible aggregation-
detachment process Ai � Aj � Ai�j of clusters of sizes i
and j with the rates of aggregation and detachment speci-
fied by reaction rates K�i; j� and F�i; j�, respectively. The
REs for the areal density ns of islands of size s � 1 can be
written as [10]

dns
dt
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�K�s; j�nsnj 	 F�s; j�ns�j
 ��1;s; (1)

where � is the deposition flux of adatoms in monolayers
per second (ML=s). The rate K�i; j� for islands of sizes i
and j with diffusivities Di and Dj is given by the
Smoluchowski formula K�i; j� / �Di �Dj�, which is con-
sistent with the point island model to be used in the
present study [7,11]. Diffusion coefficients of islands in
cases of interest here —metal islands on metal surfaces—
have an inverse power law dependence on island size Di /
i	�, with � in the range 1  �  2. We concentrate on
cases where � � 1, 3=2, or 2 corresponding to the most
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D0 is the adatom surface diffusion coefficient. The justi-
fication for this choice for moving islands is well known
and discussed in more detail, e.g., in Refs. [5,7,11].

The detachment rate of adatoms from islands of size
i� j � s is taken to depend on island size but only
detachment of single adatoms is allowed and hence it is
given by F�i; j� � F0�i� j���1i � 1j� with parameter
�. In LEID this is a physically obvious choice because in
it bombarding energies from 10 to 100 eV are involved,
adatom detachment dominates, and island breakup into
larger pieces is not expected to occur [4,12]. Moreover,
since every deposition event at the vicinity of an island
boundary can be assumed to detach adatoms at least with
a probability proportional to the island perimeter (i.e.,
s1=2), � � 1=2 is a reasonable lower limit. This was also
confirmed by molecular dynamics (MD) simulations on
an ion bombardment enhanced detachment in an island
size region up to 25 atoms where values of 0:4<�< 0:6
were found [12]. For completeness, however, the whole
parameter region 0  �  1 will be discussed here.

Putting in the relevant reaction rates into Eq. (1) leads
to REs with a complicated structure. Similar REs but
with more simple aggregation rates than here display a
rich variety of behavior [13]. Because the reaction rate for
detachment is not a homogeneous function and there is
now no detailed balance between the reaction rates (cf.
Ref. [13]), an analytical solution seems unfeasible.
Moreover, there is no guarantee of the existence of the
usual scaling type of solutions or uniquely defined scaling
exponents for the mean island size and density.

It is still possible, however, that there are stationary
phases of growth where scaling solutions exists and ef-
fective scaling exponents can be defined. To extract such
behavior, we first consider an analytic scaling ansatz. The
probability density that an atom selected at random is
contained in an island of size s is given by p�s; �� �
sns���=�, and the average size �ss of the island is defined
as �ss��� �

P
sp�s; �� [14]. In irreversible growth in the

submonolayer regime the average size is known to scale
as �ss��� � R� �� [14], where � and � are the growth and
dynamic exponents, respectively. Another central quan-
tity in submonolayer growth is the scaling function
g�x� � �ssp�s; ��, with x � s=�ss, which is independent of
the coverage � and of the parameters R � D0=� and � �
F0=D0 [14,15]. This scaling holds also for more general
situations of reversible growth [16] and growth with
moving islands [5,7].

We next assume the validity of the scaling forms for �ss
and g�x� and substitute these in the rate equations of
Eq. (1). We obtain differential equations governing �ss,
the adatom density ns, and the average island density N �P

ns [11]. By requiring stationarity of the solutions, we
obtain estimates for the dynamic and growth exponents
as follows:

� �
2

1��
; � � �=2; for � � �max; (2)
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� �
1

�� �
; � ! 0; for � � �max: (3)

Here �max represents the coverage where a maximum in
the island density occurs. The limit � � �max corre-
sponds to growth in the absence of detachment (� � 0),
and only in this region the relation � � �=2 holds. In the
region � � �max adatom detachment begins to govern
growth because there are enough islands to provide a
supply of detached adatoms exceeding the number of
deposited atoms. In this case growth becomes indepen-
dent of R and �.

In order to fully explore the rich dynamics contained in
Eq. (1) without any scaling assumptions, we have simu-
lated island growth by using the particle coalescence
method (PCM) [9]. The basic idea is to treat islands as
pointlike objects, which is a good approximation at small
coverages. In PCM, islands occupied only single lattice
sites, and aggregation and breakup occur with rates de-
termined by the kernels K�i; j� and F�i� j�. In this way
the reaction kernels in the REs can be specified exactly
since the geometric effects arising from the complicated
morphology of real islands are not taken into account
[9,10]. For details of the simulation method see Ref. [11].

The PCM simulations were carried out with island
diffusion characterized by � � 1, 3=2, and 2, and detach-
ment described by � � 0, 1=2, and 1. Parameters � and R
were in the range 10	6  �  10	1 and 105  R  109,
with special attention paid to the region where 1  �R 
100. Some simulations were carried out also for � � 3, 6,
and 10 in order to check the convergence towards the
limit of immobile islands. The simulations show that �ss
and N indeed follow a power law type of behavior only in
a limited region of the parameters, and only in this region
can well-defined scaling exponents be extracted. In this
regime we also observed fast convergence towards the
island size distributions of scaling form.

Reversible growth and small detachment rates yield
� � 0:8–1:0 indicating nearly linear growth. For size-
independent detachment (� � 0), in particular, we find
that � � 1 in agreement with Monte Carlo simulations of
Ref. [16] for reversible growth. With size-dependent de-
tachment (with � � 1=2), the dynamic exponent � and
the growth exponent � decrease from � � 1:0, � � 0:5
for � � 1, to � � 0:75, � � 0:37 for � � 3. This is
consistent with previous results for irreversible growth
with mobile islands, where in the region 1  �  3 val-
ues in the range 0:45  �  0:40 were found [5].

We confirmed the validity of our analytic prediction
� � 2=��� 1� in the absence of detachment by perform-
ing simulations with � � 1, 3=2, and 2 for � � F0=D0 !
0 (with � � 1=2). The exponent � was also found to be in
very good agreement with Eq. (1). The value � � 2=���
1� holds until � � 2, after which � � 2=3 asymptotically
follows for very large values of R � 109–1010 as pre-
dicted for immobile islands [5,14]. For moderate values
of R< 108 with mobility exponents � � 6 and 10 there is
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very slow convergence towards � � 2=3. Similar slow
convergence was noted in Ref. [5] in the case of submo-
nolayer growth with mobile islands.

Reversible growth and large detachment rates yield
values of the dynamic exponent depending on both �
and � as predicted in Eq. (2). In Table I we summarize
our numerical results and compare them with the analy-
tic predictions. As can be seen, the agreement is reason-
ably good.

Transition to a regular region of growth and its de-
tailed nature is of particular interest here and of funda-
mental significance for LEID. This transition occurs with
an increasing detachment rate in reversible growth and is
indicated by change from � � 1 to much slower growth
with �. In the latter case the value of � is determined by
exponents characterizing detachment and island diffu-
sion. The arguments above suggest that this transition
should be particularly clear when island diffusion is
fast. In Fig. 1 we show the overall behavior of dynamic
exponent � as obtained from PCM simulations for vari-
ous ��;��. In the limit of small detachment � � 0:8 and
� � 0:4 irrespective of �. Indeed, from Fig. 1 we can see
that when 1  �R  100 there is a sharp transition to a
qualitatively different type of growth characterized by
much smaller dynamic exponents � � 0:45 for � � 1=2,
and � � 0:37 for � � 1. As expected, slower growth is
obtained for enhanced detachment. The growth in this
region where enhanced detachment dominates seems to
be unexpectedly regular and the value of � does not
depend on the rate � after the transition. From our nu-
merical data we find that there is good data collapse with
�R�, where � � ��� 1�=2 and the crossover region can
be fitted by an exponential function.

The growth exponents � also follow the expected
behavior in different regions of growth. In the regime
corresponding to low values of detachment rate we
checked the relation � � �=2 to hold. On the other
hand, in the region of slower growth there is no depen-
dence on the parameter R as expected, and � � 0. This
also means that although in the region of reversible
growth it may still be possible to relate the value of �
to a critical size of islands (see Ref. [16]), in the limit of
enhanced detachment with � � 0 this becomes physi-
cally meaningless, because all islands can be dissociated.
TABLE I. Dynamic scaling exponents for a regular region of
growth with anomalously high density of small islands. Values
denoted by subscripts a are analytical estimates given in text.
Error in  < 0:1.

��;�� � �a  a

�2; 1=2� 0.46(1) 0.40 3.0(1) 2.5
(2,1) 0.38(1) 0.33 3.2(1) 3.0

�3=2; 1=2� 0.56(1) 0.50 2.2(1) 2.0
�1; 1=2� 0.72(1) 0.67 1.7(1) 1.5
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Scaling of island size distributions is expected also on
the basis of the fact that well-defined scaling exponents
exist for large detachment rates. In Fig. 2 we show scaled
island size distributions corresponding to the steady val-
ues of growth exponents at large values of detachment
rates, with ��;�� � �2; 1=2�. Results for other values of �
are very similar. In the region of regular growth the data
collapse to a single curve. The distribution is exception-
ally flat with g�x� � const for x < 1, indicating anoma-
lously high density of small islands, roughly proportional
to ns � s	1 for s < s. We find that these distributions can
be well described by the modified exponential g�x� /
x exp�	cx�, with values of  summarized in Table I.
For smaller island sizes there is an additional exponential
part exp�	x=x0� with x0 � 0:2, which is most likely due
to the random (Poissonian) aggregation of small islands.

It is far from obvious how the numerically discovered
scaling function is a solution to the REs here. Important
insight can be obtained by noting that the values for the
exponent  we have found here shown in Table I agree
well with the prediction a � ��� which is based on
an aggregation and breakup model with homogeneous
breakup kernels [11], with the same total rate as the
inhomogeneous model of detachment here. Although
the model studied in Ref. [11] is phenomenologically
different and similar analysis is not feasible at the present
case, the agreement suggests that in the case of detach-
ment the island size dependence of the total rate still
governs the aggregation/breakup process but due to
anomalously high density of small islands (and thus
high probability of aggregation) there is a competing
process of nearly random aggregation.
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FIG. 1. Growth exponent � for systems with ��;�� �
�1; 1=2�, �3=2; 1=2�, �2; 1=2�, �3; 1=2�, and (2,1) (inset) as a
function of the parameter �R���1�=2. Note the sharp transition
to growth characterized by � given by Eq. (3) (solid lines).
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FIG. 2. Fits to the simulation results for the scaling function
(solid lines) and data for cases �2; 1=2�, R � 105, and � � 10	2

(circles) and �1; 1=2�, R � 106, and � � 10	2 (squares). In
the inset the experimental data on LEID from Ref. [1] are
compared with PCM simulations for �2; 1=2�, R � 105, and
� � 10	2.
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Comparisons of available experimental results with the
PCM simulation results are carried out in Fig. 2 where the
experimental data of Degroote et al. [1] are scaled to yield
the function g�x� compared then with PCM results, with
remarkably good agreement. In LEID experiments of
Degroote et al. enhanced detachment is suggested to
dominate the behavior of island size distributions. In the
experiments, it is estimated that � � 0:1, but recent MD
simulations of Co deposition on Ag indicate much lower
values of � � 0:01 [12]. As the present results show, even
such a low ratio of detachment to deposition is sufficient
to lead to an anomalously high island density and main-
tain regular growth. Interestingly, the parameter region
� � 1:5–2 with 10  �R  100 where regular growth
occurs corresponds to those experimental parameters in
LEID and other HTD techniques where layer-by-layer
growth is observed.

To summarize, we proposed here a rate equation model
for submonolayer growth with aggregation and enhanced
adatom detachment corresponding to hyperthermal dep-
osition conditions. The model reveals that with increasing
detachment rate there is a relatively sharp transition to
regular submonolayer growth with an anomalously high
density of small islands. In this regular growth mode the
island size distributions are of scaling form and the
average island size and mean island density follow power
law behavior with well-defined effective scaling expo-
nents. We wish to emphasize that this behavior is non-
trivial since the present rate equations are not of the usual
simple form with homogeneous kernels and the rates do
not fulfill the condition of detailed balance. Scaling can
be observed only in a restricted range of the physical
growth parameters. However, what makes the present
results particularly intriguing is that the transition to
086103-4
the new regular growth mode sets in within a parameter
range corresponding very closely to that found to be
useful in HTD experiments. Indeed, our island size dis-
tributions are in good agreement with available experi-
mental data. Thus, we expect that the predictions here
could be easily checked.
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