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Surface Energy and the Common Dangling Bond Rule for Semiconductors
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Equilibrium shape and surface energies are among the most basic properties of finite crystals. Yet, an
effective approach for accurately calculating individual energy for polar semiconductor surfaces is still
lacking, and there is not a general rule regarding surface energies of different orientations. Here, we
suggest a wedge-shaped geometry for calculating individual surface energies by direct, first-principles
methods. Applications to prototypical semiconductors, Ge, GaAs, and ZnSe, establish a surprisingly
simple common dangling bond rule relating surface energies to local chemical similarities.
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ing individual energy of polar �111�=�111� surfaces,
thereby avoiding the above uncertainties. The method is

For nonpolar surfaces, one can construct a slab with two
equivalent surfaces so
Surface energy is a basic physical quantity that has
broad applications [1]. For example, semiconductor sur-
face and step reconstruction involves the minimization of
surface energy [2]. Low-energy grain boundary formation
involves the energy of surfaces at different orientations
[3]. The balance between surface energy and epitaxial
strain, and between energetics and kinetics, often controls
[4–7] surface morphology and facet growth in epitaxial
films, as well as nucleation and growth of quantum dots
and other epitaxial nanostructures. A century ago, Wulff
[8] developed a phenomenological method to determine
equilibrium crystal shape, provided that all the surface
energies are known. Since then, significant progress has
been made, most noticeably by using first-principles cal-
culations with slab geometry to understand surface en-
ergy and structure at different growth conditions. In
terms of understanding the energetic relationship between
semiconductor surfaces of different orientations, however,
little progress has been made. The reason is simple. For a
long time, it was difficult to accurately determine the
individual energy for polar surfaces such as zinc blende
�111� and �111�, owing to the inability to separate them in
the ‘‘standard’’ slab geometry.

In the early 1990s, Chetty and Martin [9] developed a
local energy density approach for the energy of individual
GaAs �111� and �111� surfaces. Although this was the first
real attempt to calculate individual polar surface energy,
the method suffered from nontrivial and often approxi-
mate calculations of the local energy density. It also relied
on the existence of symmetry-adapted unit cells. As a
result, only a handful of follow-up calculations [10,11]
have been carried out since then. The recent calculation
by Moll et al. [10] disagrees with Chetty and Martin, even
though they used exactly the same approach. For ex-
ample, Moll et al. obtained an energy for the ideal
�111� surface that is more than 0:5 eV=1� 1 lower than
that of Chetty and Martin, casting doubts on the useful-
ness of the method.

In this Letter, we present a direct approach to calculat-
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not necessarily restricted to the �111�=�111� surfaces, is
not limited to semiconductors, and is, hence, general. It
requires only the separation of a polar surface [e.g., �111�]
from its conjugate surface [i.e., �111�], forming one-
dimensional (1D) periodic nanostructure (see, for ex-
ample, Fig. 1). We show that, with such an arrangement,
surface energy can be unambiguously determined from
the total energy difference between two identical struc-
tures of different sizes. The method is recursive, allowing
one to derive the unknown energy of a given surface from
those already known. For the prototype GaAs�111�=�111�
surfaces, good agreement with previous results of Moll
et al., was obtained. Application to the third-row semi-
conductors, i.e., Ge, GaAs, and ZnSe, further establishes
a novel common dangling bond (CDB) rule: The energies
of different surface orientations [e.g., �110� and �111�=
�111�] could be related to each other via the density of
surface dangling bonds in a surprisingly simple way.

To proceed, let us first consider how surface energy is
calculated using slab geometry. For a binary AB com-
pound, the sum of the top (t) and bottom (b) surface
energies per unit supercell is defined as

�t�b � Etot�slab� � nA
A � nB
B; (1)

where Etot is the total energy of the supercell, ni (i � A
and B) is the number of the ith atom in the cell, and 
i is
the corresponding atomic chemical potential of the ith
atom [12]. Let Etot�A� (and B) be the total energy of
elemental solid A (and B) and �Hf�AB� be the formation
enthalpy of a bulk AB compound, and one can show that


A � Etot�A� � Etot�B� � �Hf�AB� �
B (2)

and

Etot�B� ��Hf�AB� � 
B � Etot�B�: (3)

Equations (2) and (3) imply thermal equilibrium between
surface and bulk. If 
B is outside the allowed range,
precipitation of either solid A or solid B will take place.
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FIG. 2. Calculated �111� surface energy as a function of the
baseline index n in Fig. 1(a). The surface is passivated by H
(q � 1:25e), and the energy zero is set at n � 10.

σ(100)

(b) (001) surfaces

σ(111)

(a) (111)/(111) surfaces

11
1

111

001

110

01010
0

σ(001)

σ(110)

FIG. 1. Cross-sectional view of the wedge-shaped structures
for extracting surface energies: (a) for the �111� surfaces from
that of the �001� surface, and (b) for the �100� surface from that
of the �110� surface. Insets are the corresponding surface unit
cells. Open and filled dots represent the two types of binary
atoms, whereas pseudohydrogen atoms are not shown.
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�t � �b � 1
2�

t�b: (4)

For some of the polar surfaces such as �001�, it is also
possible to construct a slab such that Eq. (4) holds. For
other polar surfaces such as �111�=�111�, however, the top
and bottom surfaces are inextricably combined within the
slab geometry and are, hence, inseparable.

To separate the �111� and �111� surfaces, one must
abandon the slab geometry and, instead, use a geometry
such as the one in Fig. 1(a): Here the two-dimensional tri-
angle is a cross section of a three-dimensional and infi-
nitely long wedge, consisting of two equivalent �111�
surfaces and one �001� surface, but not the �111� surface,
with their unit cells shown as insets. The three corners in
Fig. 1(a) correspond to the three ridges of the three-
dimensional structure. This transforms the problem of
separating �111� from �111� to a problem of eliminating
the effect of ridges, which can be done by taking the
energy difference between similar structures of different
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sizes. For example, by shrinking the baseline from n � 8
to 7 in Fig. 1(a), one has

�E � Etot�n � 8; 36AB� � Etot�n � 7; 28AB�

� 8Etot�AB�

� 2��111� � ��001�; (5)

where � is renormalized to the energy per 1� 1 surface
area. Similarly, a wedge-shaped structure exposing �100�
and �110� surfaces can be used for the energy of �001�. For
example, using Fig. 1(b) one has

�E � Etot�n � 8; 36AB� 8B� � Etot�n � 7; 28AB� 7B�

� 8Etot�AB� �
B � 2��100� � ��110�: (6)

In arriving at Eqs. (5) and (6), it is assumed that the ridge
energy does not change with wedge size, provided that
the size is reasonably large. Because there are always
three ridges for any wedged structure, the ridge energy,
under the assumption, thus always cancels out in Eqs. (5)
and (6). While Fig. 2 below provides a critical test to the
assumption, the cancellation effect for slabs has long been
known: for example, by taking the energy difference
between different sized slabs, one calculates rather accu-
rately the bulk energy.

We calculate surface energy using the density-
functional theory [13] within the local-density approxi-
mation. First, we consider unreconstructed GaAs surface
wedges, passivated by pseudohydrogen atoms, i.e., qH �
0:75e for each surface As dangling bond and 1:25e for
each surface Ga dangling bond. Hydrogenation helps not
only to maintain local charge neutrality, but also to
minimize atomic relaxations, so we can expect fast con-
vergence with respect to supercell size. Figure 2 shows
that, over the entire range n � 6 to 10, ��111� is converged
to within about 0:1 eV=1� 1. Inequivalent k-point sam-
pling in supercells of different sizes may account for the
small fluctuations. The validities of Eqs. (5) and (6) are
086102-2
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thus established. To further test the method, we also
calculated ��111� by swapping As with Ga and the corre-
sponding pseudo-H atoms in Fig. 1(a). The sum, ��111� �
��111�, was then compared to the results from standard
slab calculation. The difference was 0:12 eV=1� 1 for
n � 7 and 0:04 eV=1� 1 for n � 8. For hydrogenated
�001� surfaces, differences of the same magnitude were
also obtained between slab calculations and those using
the geometry in Fig. 1(b). These tests provide evidence
that no macroscopic electric field builds up across any of
the opposing faces in the present study.

Once the energies for hydrogenated surfaces are deter-
mined, it is straightforward to obtain the energy for
surfaces without H. This is done, for example, by forming
slab geometries with the hydrogenated backsurface of
known surface energy. For the Ga vacancy-terminated
GaAs �111�-2� 2 surface (Fig. 3), we obtain ��111� �
1:85 eV=a20, where a0 � 5:64 �A is the lattice constant,
or 58 meV= �A2. This is in good agreement with the result
in Ref. [10], 54 meV= �A2.

The method further allows us to study the general
trends in the individual surface energies. Here, we con-
sider the prototypical third-row semiconductors, Ge,
GaAs, and ZnSe. We focus on the 2� 2 reconstructions
of the �111�=�111� surfaces. Figure 3 shows schematically
the surface reconstructions—the vacancy, adatom, and
trimer models. These low-energy reconstructions, which
satisfy the electron-counting (EC) model [14], have been
studied before for GaAs [15,16]. For Ge and ZnSe, how-
FIG. 3. Top view of the reconstructed GaAs�111�-2� 2 sur-
faces. The open and filled dots are the Ga and As atoms,
respectively, whereas the square indicates a missing surface
atom. Larger dots are closer to the surface than the smaller
ones. For comparison, the �110� surface is also shown.
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ever, we have also considered the dimer and tetramer
models (not shown).

Figure 4 plots the calculated individual surface energy
as a function of the atomic chemical potential for the
�111�=�111� and �110� surfaces. It shows that (i) surface
energy generally decreases with increasing ionicity of the
host, fi � 0:0, 0.31, and 0.63 for Ge, GaAs, and ZnSe,
respectively. In other words, a covalent material has
larger surface energy than the corresponding ionic mate-
rials. The experimental cohesive energies for Ge, GaAs,
and ZnSe are 1.94, 1.63, and 1:29 eV=bond, respectively.
Thus, the decrease can be qualitatively understood in
terms of the weaker bond energies in more ionic mate-
rials. (ii) The energies of the vacancy and adatom surfaces
are independent of the atomic chemical potentials. The
energies of the anion adcluster surfaces are not. Because
FIG. 4. Calculated energies of �111� surfaces (top panels),
�111� surfaces (bottom panels), and �110� surfaces (as indi-
cated) for Ge, GaAs, and ZnSe (in units of eV=a20 where a0 is
the bulk lattice constant). The energies of GaAs�111� and �110�
relative to that of GaAs�111� were taken from Ref. [10] and for
Ge�111�-c�2� 8� from Ref. [17]. Except for Ge, the left-hand
side in each panel corresponds to the cation-rich limit and the
right-hand side to the anion-rich limit.

086102-3



TABLE I. Calculated energies for �110� and vacancy-
terminated �111�=�111� surfaces. They are normalized to eV
per dangling bond pair. Values in parentheses are with respect
to those of the �110� surfaces in the first row.

Ge GaAs ZnSe

�110� 1.66 (0.0) 1.14 (0.0) 0.73 (0.0)
�111�: Vcat 1.59 (�0:07) 1.07 (�0:07) 0.78 (0.05)
�111�: Van – 1.16 (0.02) 0.65 (�0:08)
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of these differences, the anion adcluster surfaces are
often energetically favored at the anion-rich conditions.
(iii) Our calculation also shows that the number of the
anion atoms in the stable adcluster configuration is a
function of the ionicity, NA � 3 for GaAs and 2 for
ZnSe, in accordance with the EC model. Interestingly,
although one may argue that the EC model is irrelevant
for Ge, we find that the tetramer model (NA � 4) is
favored over the trimer model by 0:37 eV=a20. (iv) It is a
universal observation that, on the �111�=�111� surfaces,
cation adclusters are metastable only with energies out-
side the range in Fig. 4.

The most important observation from Fig. 4 is that the
energies of the �111�=�111� surfaces follow those of the
�110� surfaces. This raises an interesting question about
whether individual energies have, in fact, common atom-
istic origin(s) regardless of the surface orientation(s). To
investigate such a possibility, we compare, in Table I, the
energies of the vacancy-terminated �111�=�111� surfaces
and the relaxed �110� surfaces. Despite their orientation
differences, threefold-coordinated bulklike atoms are
common to all these surfaces. Moreover, each of the
surfaces has a number of cation and anion dangling bonds
equal to the number of dangling bond pairs (DBP), nDBP.
By renormalizing the energies to nDBP, we see that for the
�111�, (111), and �110� surfaces, the values of Table I are
remarkably close in all three cases, Ge, GaAs, and ZnSe,
to within �0:08 eV=DBP.

A common dangling bond rule is, therefore, estab-
lished: Surfaces of similar local bonding environment,
to a good approximation, have the same energy irrespec-
tive of their orientations. It is important to note that there
are only a handful of such local bonding environments on
bulk-truncated low-Miller-index surfaces, i.e., twofold on
�001�, threefold on �111�=�111� and �110�, respectively,
and a combination of the two on any other higher-Miller-
index surfaces. In most cases, twofold-coordinated atoms
spontaneously rebond to lower their energies. Thus, most
of the low-energy zinc blende semiconductor surfaces are
made of a combination of highly strained (due to rebond-
ing) and bulklike threefold-coordinated atoms. We have
not tested the common dangling bond rule for such sur-
faces with strained and bulklike dangling bonds mixed.
However, one of our previous semiempirical studies [2]
indicates that a minimum of seven chemical bond-based
086102-4
local structural motifs should be enough to construct
surface and step energies for vicinal �001� surfaces, sug-
gesting that the CDB rule could be more general.

The CDB rule may also apply beyond zinc blende
semiconductors. It is well known that the energy of cer-
tain low-symmetry crystal surfaces is defined only up to a
gauge [18]. One such example is the polar surface of the
wurtzite crystal. Interestingly, here we observe two iso-
lated subsets of surfaces so the three faces of an arbi-
trarily wedge-shaped structure are either all nonpolar or
all polar, but not a combination, in contrast to zinc blende.
Recently, it has been argued that in the absence of a
macroscopic field, energies for polar wurtzite surfaces
can also be defined [11]. In view of the remarkable simi-
larity between wurtzite and zinc blende with identical
bonding environments up to the second nearest neighbors,
we suggest that any surfaces with identical local chemical
bonds between the two should have very similar energies.

In summary, we have proposed a direct first-principles
approach to calculate individual energy for semiconduc-
tor polar surfaces. Tests for the GaAs�111�=�111� surfaces
yield fast convergence and accurate results. Application to
prototypical third-row semiconductor surfaces estab-
lishes a common dangling bond rule and the atomistic
origin of the surface energies.
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