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Solute Diffusion in Metals: Larger Atoms Can Move Faster
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First-principles calculations for the diffusion of transition metal solutes in nickel challenge the
commonly accepted description of solute diffusion rates in metals. The traditional view is that larger
atoms move slower than smaller atoms. Our calculation shows the opposite: larger atoms, in fact, can
move much faster than smaller atoms. Conventional mechanisms involving the effect of misfit strain or
the solute-vacancy binding interactions cannot explain this counterintuitive diffusion trend. Instead, the
origin of this behavior stems from the bonding characteristics of the d electrons of solute atoms,
suggesting that a similar diffusion trend also occurs in other types of host lattices.
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faster than smaller atoms. And even more surprisingly
(and contrary to common belief ), the effect of misfit

Figure 1(a) shows the results for the calculated diffu-
sion activation energy of the 4d and 5d solutes in Ni, and
The rate of atomic diffusion in solids governs the
kinetics of microstructural changes and processes of
mass transport at elevated temperatures. In this paper,
we challenge a commonly accepted view regarding the
diffusion of substitutional solute atoms in metallic ma-
trices. Namely, in considering the diffusion of solute
atoms in a given host lattice, it is commonly believed
(for example, see Ref. [1]) that the larger the solute atom,
the slower its diffusion rate. This belief is based on the
consideration of lattice strain induced by diffusing atoms,
which increases as the size misfit between the host and the
solute atoms increases. Thus, in terms of the misfit strain,
the work required to overcome the diffusion barrier for
large atoms is often thought to greatly exceed that of
small atoms. This long-accepted view will be critically
examined by our first-principles calculations.

Here, we consider the diffusion of transition metal
(TM) solutes in a host Ni lattice. Since Ni has a close-
packed lattice with a small lattice parameter, it is an ideal
system for studying the effect of size misfit between
solute and solvent atoms on the diffusion. The choice of
Ni as the host lattice is also motivated by the puzzling
experimental observations for the diffusion of 4d and 5d
TM solutes. An analysis on the experimental data for the
diffusion rates of selected 4d and 5d TM solutes in Ni
[2–9] shows a surprising result: solute atoms with atomic
radii closest to that of Ni display the slowest diffusion
rates. As pointed out by Karunaratne and Reed [2], there
is a possible correlation between the diffusion coefficient
and the magnitude of atomic radius: the larger the solute,
the faster its diffusion rate. The scientific basis for such a
correlation is not at all understood.

The solute atoms under consideration in our calcula-
tions not only include the nonmagnetic 4d and 5d series
but also extend to the magnetic 3d series. We prove the
unexpected trend: larger atoms can indeed move much
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lattice strain is found to play only a minor role in the
observed trend. The origin of the diffusion trend lies in
the characteristics of the d-states occupancy in the elec-
tronic structure of solute atoms; the development of
bonding directionality in the d states leads to lower
compressibility and higher diffusion energy barriers.
While this study is limited to the diffusion of TM solutes
in Ni, the identified characteristics of the diffusion
mechanism are general and should be applicable to other
types of host lattices.

We solve the density-functional equations in the local
density approximation (LDA) [10] using the ultrasoft
pseudopotential method [11,12]. A 32-atom supercell
represents the host nickel lattice, with one Ni atom re-
placed by a TM solute atom. Convergence tests were
performed for the solute-vacancy binding energies and
diffusion energy barriers for both the 4d and 5d TM
solutes by increasing the size of the supercell; calcula-
tions with a 64-atom supercell yield the same results as
for the 32-atom supercell (to within less than 1%).

In the face-centered-cubic (fcc) structure, the diffusion
of the substitutional solute atoms is mediated by the
adjacent lattice vacancies [1]. The diffusion activation
energy (Q) can be written as a sum of the diffusion energy
barrier (Eb) and the vacancy formation energy adjacent to
a solute (EV

f ). Here EV
f is given as the sum of the vacancy

formation energy of the host and the solute-vacancy bind-
ing energy. The diffusion energy barrier is calculated by
displacing a solute atom towards the adjacent vacancy
along the h110i direction in the fcc lattice. As a bench-
mark, we calculated the energy barrier for self-diffusion
and the vacancy formation energy in Ni. We obtained 120
and 164 kJ=mol for the diffusion energy barrier and the
vacancy formation energy, respectively. The calculated
activation energy is 284 kJ=mol, in good agreement
with the experimental value of 285 kJ=mol [13].
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FIG. 2. Calculated diffusion coefficient (D) for 5d transition
metal solutes in Ni at various temperatures.

FIG. 1. (a) Dependence of the diffusion activation energy (Q)
on atomic number for 4d and 5d TM solutes in Ni. (b) The size
of the atomic radii (i.e., Goldschmidt radii [14]) for both the 4d
and the 5d series. Contributions from the vacancy formation
energy adjacent to a solute (EV

f ) and the diffusion energy
barrier (Eb) to Q for the 4d and 5d TM solutes in Ni are in
(c) and (d).
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Fig. 1(b) displays the size of the atomic radii (i.e.,
Goldschmidt radii [14]) of these solutes. These results
are truly remarkable, considering that the activation en-
ergy varies across the TM series in a counterintuitive way:
larger atoms (early and late TM elements) have lower
diffusion activation energies than smaller atoms (middle
TM elements). The individual contributions from EV

f and
Eb are shown in Figs. 1(c) and 1(d). The EV

f term follows
the expected trend: the larger the misfit between solute
and solvent atoms, the larger (or more negative) the
solute-vacancy binding energy. However, compared to
the diffusion energy barrier, the solute-vacancy binding
energy shows only a weak dependence on the atomic
number of the solutes. The major contribution to the
variation of the activation energy comes from the varia-
tion of the diffusion energy barrier across the 4d and 5d
TM series.

We find that there is good agreement between theory
(164 kJ=mol or 1.7 eV) and experiment [15] (1:7�0:1 eV)
in the vacancy formation energy of Ni. The agreement,
however, may be fortuitous, since the work by Mattsson
[16] suggests that LDA calculations tend to underestimate
the vacancy formation energy of selected transition met-
als by 0.1–0.2 eV. Nevertheless, in the present case, any
intrinsic LDA error in the vacancy formation energy
would imply a small rigid shift in the diffusion activation
energy across the TM series and should not affect the
overall calculated diffusion trends.

We note that the activation energy of the 5d solutes is
systematically higher than that of the 4d solutes, even
though the isoelectronic 4d and 5d elements have nearly
identical atomic radii. We will show that the trend in the
diffusion energy barrier can be described by the com-
pressibility of solute elements. Since the magnitude of the
compressibility manifests the size of the atomic radius
within a TM series, it becomes possible to establish a
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correlation between atomic radius and diffusion activa-
tion energy across a TM row.

In the following discussion, we focus on the 5d solutes.
For vacancy-mediated diffusion, the diffusion coefficient
of the diffusing solute atom at temperature T is

D � fD0e�Q=kBT; (1)

where f is the correlation factor, D0 is the prefactor [17],
and kB is the Boltzmann constant. The correlation factor,
which takes into account the fact that the diffusing atom
can jump back to its previous lattice site if the solute-
vacancy pair remains undissociated, can be approximated
from the Lidiard’s five-frequency exchange model as [1]

f �
2�1 � 7�2

2�s � 2�1 � 7�2
; (2)

where �1 and �2 are the rates of site exchange between
vacancy and host atom that results in the rotation and
dissociation of a solute-vacancy pair, respectively, and �s
is the rate of site exchange between vacancy and solute.
These site-exchange rates can be obtained from the dif-
fusion energy barriers. For early and late 5d TM solutes,
we find that �2 > �1; the site-exchange energy barrier in
the �2 term differs insignificantly (to within 10 kJ=mol)
from that of Ni self-diffusion and is about 40 kJ=mol
lower than that in the �1 term. The calculated correlation
factors are of the order of 10�3 for Hf and 10�1 for Au at
1000 �C. For midrow TM solutes, we find that �1 � �2 	
�s, yielding f � 1 (the energy barrier in both the �1 and
�2 terms is about 115 kJ=mol for the Re solute). The
migration entropy contribution in the prefactor D0 [17]
can be estimated by considering the vibration degrees of
freedom of the migrating solute atoms as given by a
collection of classical harmonic oscillators. Under these
assumptions, the solute atoms are displaced in three
orthogonal directions, and the vibration frequencies are
evaluated through the calculated force constant matrices.
For 5d solutes in Ni, the prefactors D0 are found to be of
the order of 10�5 m2 s�1. The calculated diffusivity of
these solutes shown in Fig. 2 is in good agreement with
experiments [2] in both the trends and the magnitudes
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across the 5d series. Note that the diffusion coefficients of
the midrow TM solutes are several orders of magnitude
smaller than those of the early and late TM solutes.

When inserted into the host lattice, larger solute atoms
induce larger lattice strain. Intuitively, one would expect
that a larger strain field leads to a higher diffusion energy
barrier. However, one should keep in mind that the dif-
fusion energy barrier is the energy difference between the
solute atom at the lattice site and at the saddle point;
therefore, it is the difference in strain between these two
lattice configurations that contributes to the energy bar-
rier. The difference in strain will be manifest in the
change of the interatomic distances. We find that the
contraction in the nearest neighbor distance (between
solute and Ni) from solute at the lattice site to solute at
the saddle point displays only a weak dependence on the
atomic size of the solutes, e.g., the amount of contraction
is 6.8% (0.17 Å), 6.2% (0.15 Å), and 5.6% (0.14 Å) for Hf,
Re, and Au solutes, respectively. Therefore, in terms of
the effect of misfit strain on the diffusion energy barrier,
there is no significant difference between larger and
smaller solute atoms.

Figure 3 shows the valence charge density of Hf, Re,
and Au solutes, representing the variation of the chemical
bond across the 5d row, in the (001) planes of the Ni host
lattice. It indicates that (i) the d electrons of Hf do not
participate in directional bonding with its nearest neigh-
bor Ni atoms; (ii) the charge density of Re exhibits a clear
orientation along the h110i directions with Ni as the
nearest neighbors, indicating the development of direc-
tional d bonds; and (iii) the Au d electrons are highly
localized and chemically inactive due to its closed d shell.
In analogy to the case of the elemental TM series, one
expects an increase of the attractive partial pressure due
to the directional bonding developed within the d states
for the midrow 4d and 5d TM solutes. Meanwhile, the
s-electron contribution to the partial pressure experienced
by these elements has to become more repulsive (and thus
the radius correspondingly smaller) in order to counter-
balance this attractive d-electron partial pressure to
achieve equilibrium. As a result, the equilibrium Re-Ni
interatomic distance is among the smallest across the 5d
row. On the other hand, the rapid increase in the s-electron
FIG. 3. Electronic charge density (in units of e= �A3) of (a) Hf,
(b) Re, and (c) Au solutes in the (001) plane of the fcc Ni lattice.
Note that a vacancy is located next to the solute atom.
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partial pressure at a smaller radius is reflected in a low
compressibility for smaller solutes.

Since solute atoms are considerably compressed near
the saddle point, the diffusion energy barrier should
reflect the degree of bonding directionality of the solutes.
To further show that smaller solute atoms are indeed more
difficult to compress, we carried out a model calculation
to examine the trend in the 5d solute compressibility due
to the change of local pressure exerted by neighboring
host atoms. With solutes located at the lattice site, we
displace the nearest neighbor Ni shell uniformly towards
the solutes but allow the rest of the host Ni atoms to relax.
The resulting strain energy is found to differ considerably
among different solutes; it is the highest for Re but the
lowest for Hf, even though Hf is already more prestrained
before compression. In other words, the presence of di-
rectional bonds makes the midrow solutes less compress-
ible than the early and late TM solutes in the 4d and 5d
TM series—a trend consistent with the trend in the
compressibility of elemental transition metals [18].

We find that the compressibility of elemental transition
metals provides a comprehensive physical basis to de-
scribe the trend in the diffusion energy barrier of TM
solutes. The fact that the solute elements with lower
compressibility also have smaller atomic radii leads to
the ‘‘counterintuitive’’ correlation between atomic radius
and diffusion activation energy across a TM series.
Moreover, the fact that the diffusion energy barriers in
the 5d TM series systematically exceed those in the 4d
TM series (Fig. 1) is largely due to lower compressibility
for the 5d elements. However, a direct comparison of the
diffusion energy barriers between 3d and 4d=5d solutes
cannot be fully established solely on the basis of the
compressibility of elemental transition metals due to the
complexity of the magnetic coupling between 3d solutes
and Ni (see below).
FIG. 4. Dependence of the diffusion activation energy (Q),
the vacancy formation energy adjacent to a solute (EV

f ), and the
diffusion energy barrier (Eb) on atomic number for 3d solutes
in Ni.
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We now turn to the diffusion of 3d solutes in Ni. Note
that the size misfit with the host is less pronounced for the
3d solutes; thus the system under study is different from
the diffusion of larger solute atoms in a smaller lattice.
Our calculations show that the activation energy of the 3d
solutes (Fig. 4) displays an even more complex and in-
triguing dependence on the atomic number. Similar to the
case of the 4d and 5d solutes, the solute-vacancy binding
energy exhibits a weaker dependence on the atomic num-
ber than the diffusion energy barrier across the 3d row.
But, very unlike the case of the 4d and 5d solutes, a local
minimum in the diffusion energy barrier profile is found
to exist in the middle of the 3d TM series (i.e., at the
position of the Mn solute). Most significantly, the exis-
tence of a local minimum in the diffusion energy barrier
is accompanied with the occurrence of the maximum in
the magnetic moment across the 3d row. We find that Mn
has the largest magnetic moment among the 3d solute
atoms: the magnetic moments (evaluated within the
Goldschmidt radii) are �0:4�B, �1:2�B, 3:1�B, 2:7�B,
and 1:7�B for V, Cr, Mn, Fe, and Co solutes, respectively
(the negative sign here indicates that the moment is
coupled antiparallel to the nearest neighbor Ni moment).
Obviously, magnetism plays a central role in determining
the diffusion energy barrier.

From Cr to Mn, there is a change in the mag-
netic coupling between the solutes and neighboring Ni
atoms, indicating an abrupt change in the d-bonding
characteristics. In Mn, the majority-spin d states are
nearly fully occupied and do not participate actively in
the chemical bonding; on the other hand, the minority-
spin d states are less than half filled and the occupied
states do not have appreciable h110i directional d-bonding
components. Thus, the Mn solute is easy to compress,
resulting in a low diffusion energy barrier. In Fe, the
minority-spin d states with the directional bonding char-
acteristic become progressively occupied, which accounts
for the increase in the diffusion barrier energy from Mn
to Fe.

Since the variation in the diffusion energy barrier is
largely determined by the characteristics of the d-states
occupancy in the electronic structure of solute atoms, we
suggest that a similar diffusion trend can be expected in
other types of metallic host lattices. Indeed, our prelimi-
nary result for the diffusion of 5d solutes in the open
body-centered-cubic Fe shows exactly the same diffusion
085901-4
trend as in the close-packed fcc Ni — a result that further
proves our conclusion.
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