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Motion and Rotation of Small Glissile Dislocation Loops in Stress Fields
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We derive here for the first time the equations that describe the combined motion and rotation of
small prismatic dislocation loops in stress fields. When the applied torque is balanced by the self-torque
of the loop, we show how the solution can be obtained for the loop orientation, and how this orientation
affects the glide force on the loop.
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freedom for one-dimensional motion.
Kroupa [3] has long ago pointed out that stress fields

exert both a net force and a net torque on small disloca-

the second term is the interaction energy of the loop with
the stress field originating from sources or defects other
than the loop itself. For vacancy-type prismatic loops, the
Introduction.—Atomistic computer simulations of
small clusters of self-interstitials have revealed that these
clusters are highly mobile along certain crystallographic
directions. Their thermal mobility and Brownian motion
along these directions rapidly decreases, however, as the
size of the cluster increases. A review of these computer
simulations has been provided by Osetsky et al. [1], and
more recent studies are given by Marian et al. [2]. All
these studies have shown that the activation energy for
cluster diffusion reaches a saturation value, while the
preexponential factor continues to decline with the cluster
or loop size. The diffusion of loops containing more than
100 interstitials becomes too slow to be quantified with
molecular dynamics simulations. Nevertheless, since the
activation energy for migration becomes nearly indepen-
dent of the loop size, they remain very mobile if forces act
on them, even though their Brownian motion becomes
insignificant. Such forces naturally exist in real crystal
due to internal stress fields originating from other defects,
in particular, from dislocations.

Small clusters of self-interstitials, when no longer sub-
ject to rapid Brownian migration, are, of course, synony-
mous with small prismatic dislocation loops. When their
Burgers vectors are aligned along one of the possible
glide directions, they can move on one-dimensional tra-
jectories in response to the force exerted by their elastic
interaction with stress fields of other defects. As we shall
see, this force depends, among other factors, on the ori-
entation of the dislocation loop, and, in turn, the orienta-
tion is affected by the stress field. In other words, the
motion of a small prismatic dislocation loop on its glide
prism has 3 degrees of freedom, namely, its position
along the glide prism, and the orientation of its normal
vector (normal on the loop plane) in relation to its Burgers
vector or glide direction. The specification of the latter
requires then two angles, hence a total of 3 degrees of
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tion loops that he derived from the Peach-Koehler force.
Numerical studies of both force and torque have been
carried out by Ghoniem et al. [4] for small prismatic
dislocation loops interacting with a nearby dislocation,
assuming, however, a fixed orientation of the loop normal
vector.

In order to go beyond these earlier studies and to make
contact with the atomistic simulations, it is necessary to
remove the constraint of a fixed orientation, and to derive
a set of equations that satisfies both the balance of forces
along the glide prism and the balance of force moments.
The derivation of this complete set of the equations of
motion and a method for their solution are given for the
first time in this Letter.

Energy for rotating dislocation loops.—We shall limit
our considerations to overdamped motions of dislocation
loops in which the kinetic energy is negligible compared
to the potential energy. Gillis and Kratochvil [5] have
justified this limitation when they showed that disloca-
tions respond to changes in applied stress within 10 to 20
ps. This means that for nearly all practical purposes, their
velocity is determined by the balance of applied force,
Peierls force, and the drag caused by phonon and electron
scattering. Furthermore, the rotation of the normal vector
of the loop to a sudden application of a torque will
certainly occur with a similar, if not shorter, response
time. However, rotation is limited not so much by drag
forces but by the increase in the strain energy of the loop
itself.

With these considerations in mind, it is then possible to
write for the energy of a prismatic dislocation loop of the
interstitial type

E � W � b
ZZ
dA0 t�r0� � n̂n�r0�: (1)

Here,W is the strain energy or self-energy of the loop, and
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sign changes for the second term. The normal component
of the vector field ti�r0� � 
ij�r0�bj=jbj is integrated over
the area of the loop whose orientation is defined by the
unit normal vector n̂n and whose Burgers vector is b. If the
character of the dislocation loops remains the same, b is a
constant vector. Perfect loops (but not faulted loops) may
rotate, however, and n̂n remains to be determined.

In general, the surface over which the integration in
Eq. (1) is to be carried out can be any open surface
bounded by the dislocation loop, and it need not be
planar. Furthermore, the convex, closed curve that de-
lineates the dislocation loop possesses in principle an
infinite number of degrees of freedom. It adopts a shape
such that the glide force at each point along the curve is
balanced by the self-stress. However, if the stress field

ij�r�, and hence the vector field ti�r�, vary only linearly
across the loop, it will assume a planar shape; i.e., the
dislocation line is a curve on a plane with the unit normal
vector n̂n. We may then choose this plane for the purpose
of evaluating the surface integral in Eq. (1). Let us write
for any point on the loop plane r0 � r� �, where r is the
position of the centroid of the loop. The stress vector may
then be expanded in a Taylor series, ti�r0� � ti�r� �
ti;j�r��j, neglecting any higher order terms. Inserting
this linear expansion in Eq. (1) and using the fact that
the surface integral of the vector � vanishes as it is
anchored in the loop’s centroid, we obtain

E�r; n̂n� � W�n̂n� � bA�n̂n��t�r� � n̂n�: (2)

The energy of a small dislocation loop in a stress field
from a remote source must therefore be viewed as a
doubly vector-valued scalar field. The loop normal vector
n̂n is in principle independent of r, but it becomes corre-
lated by virtue of its dependence on the stress field, i.e., on
t�r�. To determine this correlation is the main objective of
this Letter.

Self-energy of prismatic loops.—For this purpose, we
need to specify the self-energy of the loop as well as its
shape and orientation. In order to give a more transparent
derivation, the following simplifications are employed.

First, we assume that the traction vector field varies
little over the area of the loop and we may replace it by an
average value, say, its value at the loop center. Second, we
assume that the shape of the loop is elliptical with a
minor radius of R0 and a major radius of R. Third, we
consider an elastically isotropic solid and write for the
self-energy of an elliptically shaped loop

W �
�b2

4��1� ��
4RE�k��1� �k� ln�R0=r0�: (3)

Here,� is the shear modulus, � is Poisson’s ratio, r0 is the
dislocation core radius, and E�k� is the complete elliptic
integral of the second kind. The form of the above equa-
tion is an adaptation of several analytical expressions or
numerical results [6–9] which were obtained earlier by
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other researchers for the purpose of studying the loop
energy as a function of its shape and rotation, and to
determine the energy minimum, i.e., the orientation of
the normal vector relative to the Burgers vector in the
absence of stress. We note that different researchers had
arrived at different conclusions regarding this orienta-
tion, and we can replicate their various results by appro-
priate choice of the empirical parameter �. For example,
� � 1=4 results in an energy minimum for a loop when
normal and Burgers vectors are parallel. This is the case
considered most likely, and it will be adopted for the
example given at the end. However, the general derivation
given below is not restricted to this case.

In Eq. (3), the loop orientation defines the parame-
ter k as

k � 1� �n̂n � b̂b�2 � 1� cos2�; (4)

where b̂b is the unit vector in the direction of the Burgers
vector.

For convenience, we assumed also in Eq. (3) that when
the loop shape is circular, R � R0, k � 0, and normal and
Burgers vectors are parallel. We denote the area and
energy of the circular loop by A0 and W0, respectively.
Rotation of the loop is accomplished when one side glides
up and the opposite side down the glide cylinder. As a
result, the shape becomes elliptical, increasing the loop
area to

A � �RR0 � A0= cos� (5)

and the loop circumference to 4RE�k�. An elliptically
shaped loop may in principle assume a circular shape
again while maintaining its orientation. However, this
requires pipe diffusion along its core, and this process
can be neglected during glide motion.

Glide force and torque on prismatic loops.—The glide
force on the loop is now given by

F�r; n̂n� � �rrE � b̂b � bA�n̂n�n̂ni
ij;k�r�b̂bjb̂bk; (6)

where the index k after the comma indicates the par-
tial derivative @=@xk, and repeated indices imply a
summation.

The net force moment, on the other hand, is obtained by
evaluating n̂n
rn̂nE. The rotational gradient of the loop
energy is

�rn̂nW � 2b̂b
������������
1� k

p dW
dk

� A�k���k�b̂b; (7)

where

��k� �
W0

A0

2

�k
������������
1� k

p f�1� 3k�� 2k2��E�k�

� �1� k��1� k��K�k�g (8)

and K�k� is the complete elliptic integral of the first kind.
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FIG. 1. The inset shows the three vectors required to charac-
terize the orientation of a prismatic, interstitial-type loop. The
Burger vector b which is given determines the glide direction.
The traction vector field t�r� is defined by the source of stress,
here an edge dislocation, and the normal vector n. As the loop
glides along its glide cylinder, parallel to the dotted line, the
orientations of t and n change.

P H Y S I C A L R E V I E W L E T T E R S week ending
27 FEBRUARY 2004VOLUME 92, NUMBER 8
Equations (7) and (8) determine the intrinsic force
moment of the dislocation loop itself, which we hence-
forth call the self-torque of a dislocation loop and
denote as

Q �k� � �n̂n
rn̂nW � ��k��n̂n
 b̂b�: (9)

It is this force moment that restores the loop orientation to
its minimum energy configuration in the absence of an
applied force moment or torque. The external or applied
torque is given by

M �k� � A�k��n̂n
 t� � A�k�
�t � n̂n�

�b̂b � n̂n�
�n̂n
 b̂b�: (10)

Our result differs from the one originally obtained by
Kroupa [3], as he assumed a loop area that remains
constant with rotation. As a result, our first term in
Eq. (10) contains an orientation-dependent loop area. In
addition, we also obtain a new second term for the change
in loop area as the loop rotates.

After overcoming frictional forces or activation bar-
riers in loop rotation, the sum of self-torque and applied
torque has to vanish, i.e.,

n̂n
rn̂nE � Q�k� �M�k� � 0: (11)

Using Eqs. (9) and (10), this equation can also be
written as

�n̂n
 t� � �n̂n
 b̂b�
�
��k� �

�t � n̂n�

�b̂b � n̂n�

�
: (12)

It follows from this equation that the loop normal vector n̂n
lies in the same plane as b̂b and t. Furthermore, it also
shows that the normal vector cannot lie between the two
vectors t and b̂b. To determine quantitatively the orienta-
tion of the normal vector in the plane spanned by the
Burgers and the traction vectors, it is better to use the
absolute value of Eq. (12) together with the angular
relationships easily verified from the diagram shown as
an inset in Fig. 1:

cos� � n̂n � b̂b �
������������
1� k

p
; jtj cos� � b̂b � t;

jtj cos��� �� � n̂n � t:
(13)

Note that the angle � is known, while � needs to be
determined. Elementary manipulations lead to the final
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equation

s gn���
������������������
k�1� k�

p
��k� � jtj sin�; (14)

which must be solved numerically for k, and hence for the
angle � between the Burgers and the normal vectors.
Note, that the normal vector n̂n may lie on either one or
the other side of the vector b̂b, corresponding to the two
solutions �� admitted by the first of the Eqs. (13). One
solution gives a stable orientation, the other one an op-
posed orientation in which the loop is in an unstable state.

Example: Interaction with an edge dislocation.—To
assist the reader interested in the use of the preceding
equations, we apply them to the example displayed in
Fig. 1. A prismatic dislocation loop moves along its glide
cylinder that is parallel to the glide plane and perpen-
dicular to the line direction of a pure edge dislocation.
Alternatively, one may consider the center of the pris-
matic loop to be stationary while the edge dislocation
moves on its glide plane. For a fixed loop orientation,
Kroupa [10] and Makin [11] have analyzed the interaction
with a straight dislocation in considerable detail.

For the present case, the traction vector t has only two
components, namely [12]
tx � b
xx � H
�1� 3�2�

�1� �2�2
and ty � b
xy � H

��1� �2�

�1� �2�2
; with H �

�b2

2��1� ��h
and � �

x
h
: (15)
We see that ty changes its sign, and it, as well as � and
�, becomes negative for x > 1. Equation (14) takes then
the form

s gn�1� ��
������������������
k�1� k�

p
��k� � H

��1� �2�

�1� �2�2
: (16)
Its numerical solution, for the particular set of parame-
ters stated in the caption, is shown in Fig. 2. Several
points are noteworthy. First, we see very abrupt changes
or flips in the loop orientation at the midplane, x � 0, and
at the diagonal planes, x � �y. Second, the dislocation
085507-3
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FIG. 3. The normalized glide force (see text for details)
exerted by an edge dislocation on a prismatic interstitial-type
loop moving parallel to the glide plane of the dislocation. The
thin curve shows this force when the loop orientation remains
fixed, and the thick curve when the loop rotates such that the
applied torque is balanced by the loop’s self-torque.
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FIG. 2 (color online). The rotation angle � as a function of
the loop position along its glide path. The results shown here
and in Fig. 3 are for a loop with a radius of R0 � 5r0, and for a
distance h � 3R0 from the glide plane of the edge dislocation.
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loop remains rotated away from its equilibrium orienta-
tion � � 0 even at far distances from the edge dislocation
where its stress field is weak.

The interaction energy between loop and edge dis-
location consists of two parts, namely, the change in the
self-energy of the loop as it is rotated by the stress field
of the edge dislocation, and the interaction proper with
the stress field. Using the rotation angle ���� from the
solution of Eq. (16), the glide force F as defined in
Eq. (6) is obtained. Since the gradient of stress fields for
straight dislocation diminishes as r�2 where r is the radial
distance from the dislocation, we display the quantity
�2�1� ��=�b2��r=R0�

2F in Fig. 3. The thick curve shows
this normalized glide force when the loop is allowed to
adjust its orientation, while the thin curve shows the
classical result for the same loop with orientation held
fixed at � � 0. The rotation caused by the stress is seen to
significantly enhance the glide force at large distances.
Although the force is weak in absolute terms at these
large distances, it is there where this force begins to
impose a drift on the otherwise random motion of the
loop, leading to its eventual capture in close vicinity of
the dislocation.

Conclusion.—In summary, we have derived the com-
plete and consistent expressions for glide force and torque
exerted by an arbitrary stress field on a small, glissile
dislocation loop, and for the self-torque of the loop. A
solution has been obtained for the loop orientation as a
function of its location, and this solution is employed to
derive the actual interaction energy or glide force for the
combined motion and rotation of a loop in a general stress
085507-4
field. We have demonstrated that stress-induced rotation
can significantly enhance the glide force.
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