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Spatiotemporal Oscillations and Rheochaos in a Simple Model of Shear Banding
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We study a simple model of shear banding in which the flow-induced phase is destabilized by
coupling between flow and microstructure (wormlike micellar length). By varying the strength of
instability and the applied shear rate, we find a rich variety of oscillatory and chaotic shear banded
flows. At low shear and weak instability, the induced phase pulsates next to one wall of the flow cell. For
stronger instability, high shear pulses ricochet across the cell. At high shear we see oscillating bands on
either side of central defects. We discuss our results in the context of recent experiments.
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FIG. 1. Intrinsic constitutive curves for differing degrees of
coupling between flow and micellar length. (a) Weak coupling,
giving the standard coexistence of stable low and high shear
vated by the above experiments, we introduce the first
model of spatiotemporal rheochaos in shear banding sys-
tems with multibranched constitutive curves.

bands (A and B); (b) moderate coupling; (c) strong coupling.
Squares show Hopf bifurcations. The thin black lines delimit
the periodic orbit of the local model at fixed �.
Complex fluids commonly undergo flow instabilities
and flow-induced phase transitions that result in spatially
heterogeneous ‘‘shear banded’’ states. Classically studied
systems include wormlike micellar surfactants [1], dense
lamellar onion [2] or cubic [3] phases, and polymer
solutions [4]. Fluidity banding has also been reported in
soft glassy materials [5] such as colloidal suspensions [6]
and simulated Lennard Jones particles [7]. Experi-
mentally, the basic observation is of two coexisting shear
bands with differing viscosity and microstructure (or
fluidity). Theoretically, this is captured by invoking mul-
tiple flow branches in the constitutive relation of shear
stress versus shear rate, �� _��� [8–10]. The system then
separates into a steady state comprising two shear bands,
each on its own flow branch [Fig. 1(a)].

However an accumulating body of data shows this
basic picture to be oversimplified: Many shear banding
systems display oscillations or irregular fluctuations sug-
gesting chaos in their bulk rheology, rheo-optics, or
velocimetry. Example systems include onion phases
[11]; shear thinning wormlike micelles (WMs) with a
stress plateau in the flow curve [12], showing common
stress banding (band normals in the flow-gradient direc-
tion) [13,14]; shear thickening WMs showing common
stress [15] or common strain rate (vorticity) [16] banding;
and polymer solutions [4]. Erratic stress response has
also been studied in dense colloidal suspensions [17].
In contrast, the present models predict steady banded
states [8–10].

In the noninertial limit relevant to these materials, the
nonlinearity underlying this erratic response must arise
in the constitutive behavior of the system [18]. Temporal
‘‘rheochaos’’ has been studied in homogeneous models of
both director dynamics in sheared nematics [19] and
shear thickening systems with a single-branched flow
curve [18]. In many systems, however, heterogeneity is
likely to be a crucial ingredient of rheochaos. Moti-
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Homogeneous flow is unstable in any region of negative
constitutive slope, d�=d _�� < 0. This is easily seen in
models that take the ‘‘mechanical variables’’ (�, _��) as
the relevant dynamic variables [20]. The system can then
separate into two shear bands, each on its own stable flow
branch. See Fig. 1(a) for shear thinning gradient-banding
systems. In more realistic models, the mechanical
variables are coupled to microstructural quantities such
as director orientation [8], polymeric concentration [21],
or micellar length [22]. This coupling can destabilize the
rising high shear branch and cause, e.g., tumbling and
wagging in nematics [23]. Here we construct a simple
model with an unstable high shear branch [Figs. 1(b) and
1(c)] and show that it has oscillatory and chaotic shear
banded states at imposed global shear rate. Our model
resembles other globally coupled reaction diffusion sys-
tems [24]. Aradian and Cates are currently studying
spatiotemporal flows of similar models with a single
constitutive branch [25].

We use only the minimal ingredients needed to cap-
ture the observed phenomena, so we do not address the
2004 The American Physical Society 084502-1
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FIG. 2. Homogenous dynamics (D � 0) at fixed log� �
�0:301 for different initial conditions. n � 0:145.
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microscopics of any given system. However, for concrete-
ness we use the language of shear thinning WMs. There
exist numerous reports of apparently unattainable homo-
geneous high shear rate branches in such systems, in
which the sample flows erratically or is ejected from
the cell (e.g., [1]). This is seldom discussed in detail, but
sometimes attributed to surface instability. Nonetheless,
the possibility of bulk instability remains. Indeed, in
someWMs the high shear band breaks into subbands [26].

For simplicity we consider just one microstructural
variable, the mean micellar length n, and define our
model by

� � �� 	 _��; (1)

@t� � �
�

�n�
�

g� _���n��
�n�

�D@2y�; (2)

@tn � �
n
n

�
N� _��n�

n
: (3)

For simplicity we have restricted ourselves to a one-
dimensional velocity v � x̂xv�y� with _���y� � @yv�y� in
one spatial dimension y. Equation (1) gives the uniform
shear stress ��t� in the noninertial limit. It comprises a
(generally nonuniform) viscoelastic micellar contribu-
tion ��y; t� and a solvent contribution with viscosity 	.
The dynamics of � [Eq. (2)] has a length-dependent
relaxation time [27]

�n� � 0

�
n
n0

�
�
; (4)

and a steady homogeneous state � � g� _���n�� set by

g�x� �
x

1� x2
; (5)

admitting a constitutive curve of negative slope. The
spatial gradients D@2y� allow for a smooth interface of
width l /

����
D

p
between the shear bands, and occur natu-

rally in models where stresses arise from, e.g., spatial
gradients of liquid crystalline orientation [8].

The micellar length n has its own relaxation time n
[Eq. (3)], related to the (unknown) underlying rates of
micellar scission and recombination. For example, scis-
sion could be enhanced by the agitation of shearing or
recombination aided by shear-induced alignment of mi-
cellar ends [22]. We assume the former, taking

N�x� �
n0

1� x�
: (6)

Because this decrease sets in only for shear rates _�� *

1=n, the degree of coupling between the mechani-
cal variables ��; �; _��� and length n can be tuned by
varying n.

Using this model we study flow between two parallel
plates at y � 0; L with boundary condition @y� � 0, us-
ing units in which n0 � 1, 0 � 1, and L � 1. We set � �
1:2, � � 1:5, though our results are qualitatively robust to
reasonable variations in these values.
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Homogeneous dynamics.—The constitutive curves
�� _��� and domains of instability for homogeneous states
under controlled stress are shown in Fig. 1. (At controlled
strain rate, the system is unstable only to fluctuations
with nonzero wave vectors k > 0: homogeneous instabil-
ity, k � 0, is not possible.) For small n & 0:115 we find
pure mechanical instability [Fig. 1(a)] that does not
involve n. The constitutive curve is then (at any fixed
�) an unstable saddle [28] (one unstable eigenvector). For
larger n, coupling to micellar length broadens this in-
stability into the rising high shear branch, which is now
an unstable focus [28] (two unstable eigenvectors):
Figs. 1(b) and 1(c). This instability terminates in a Hopf
bifurcation [28].

We then studied the nonlinear dynamics of the local
(D � 0) model for fixed �, solving Eqs. (1)–(3) via a
fourth order Runge-Kutte method [29]. This confirmed
the stability properties of Fig. 1: states near an unstable
(stable) segment of the constitutive curve flow away from
(towards) that segment (Fig. 2). They also reveal a peri-
odic orbit about the unstable high shear branch for
stresses just below the Hopf bifurcation. We also used
AUTO97 [30] to trace the amplitude of the periodic orbits,
Figs. 1(b) and 1(c). Periodic orbits are the most compli-
cated behavior possible for the local model since it has
only two degrees of freedom, d � 2. Chaos requires
d 
 3 [28].

Spatially heterogeneous dynamics.—We now turn to
the nonlocal model, D � 0, focusing on the implications
of an unstable high shear branch [Figs. 1(b) and 1(c)]. The
dimensionality d is now effectively infinite, since each
spatial point has its own value of n and _��. We solved the
nonlocal equations using a Crank-Nicholson algorithm
(checking our results with the Rosenbrock method) [29],
with the constraint of fixed global strain rate, 	_��_�� �R
1
0 dy _���y; t�. For small n & 0:115 we find stable shear

bands [Fig. 1(a)]. In contrast, for n � 0:145 (unstable
high shear branch) we find spatiotemporal oscillations
and chaotic banded flows (Fig. 3).
084502-2
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FIG. 4 (color online). Data of Fig. 3 for 	_��_�� � 1:5; 11:35;
23:0; 31:0 (arrows under abscissa) and 130< t < 140 in con-
densed form. Solid line: intrinsic constitutive curve; long
dashed line: extrema of the local periodic orbits; dotted line:
maximum shear rate _��h� of the propagating high shear pulse
described by Eqs. (8).

FIG. 3. Right: Space time plots for local shear rate evolution
at applied global shear rate for n � 0:145, D � 0:0016 with
space y � 0–1 left to right and time t � 120–140 bottom to top.
In plots downward greyscale ranges are _�� � 0:3–28:7,
0:3–37:6, 0:2–44:5, 0:6–40:0, 0:9–57:7, and 8:7–58:1. Left:
corresponding stress versus time.
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Several regimes are evident. At low applied shear, 	_��_�� �
1:5, a thin pulse of high shear ricochets back and forth
across the cell (Fig. 3, top). A thin fluctuating high shear
band, away from the rheometer wall, was seen experi-
mentally in Ref. [13]. At larger shear rates, we find two or
more such pulses. For two pulses (not shown), we typi-
cally find a periodically repeating movie with the pulses
alternately bouncing off each other (midcell) and the cell
walls. Once three pulses are present, 	_��_�� � 7:0, periodicity
gives way to chaotic behavior (Fig. 3).

At still higher shear, 	_��_�� � 19:2, we find regular oscil-
lations of spatially extended bands pinned at stationary
defects. The local shear rates span both the low and high
shear constitutive branches. Oscillating (vorticity) bands
were seen experimentally in Refs. [4,16]. For the inter-
mediate value 	_��_�� � 11:35 we find intermittency between
patterns resembling those for 	_��_�� � 7:0 and 	_��_�� � 19:2.

Finally, for 	_��_�� � 23:0; 31:0 we find oscillating bands
separated by moving defects (Fig. 3, bottom right). The
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flow is now governed only by the high shear constitutive
branch. In each band, the shear rate executes the periodic
orbit of the local model (Fig. 2 and top data set of Fig. 4).

The largest Lyapunov exponent (not shown) is positive,
indicating chaos, in the multipulse (2:5 � _�� � 10:5) and
defect dominated (19:0 � _�� � 30:5) regimes [31].

For different values of n we find a host of other
interesting phenomena [31]. For example, for weaker
instability (n � 0:13) at low applied shear rates we see
a high shear band that can pulsate in width while adher-
ing to the rheometer wall [Fig. 5(a)] or can meander about
the cell [Fig. 5(b)]. The former behavior resembles inter-
facial motion in seen WMs [14,15] and onion phases [11].

Finally, we discuss in more detail the results of Fig. 3
(top right), which show a high shear pulse traveling
through a homogeneous phase on the low shear branch.
At times when the pulse is far from the wall, the stress �
is constant (flat regions in Fig. 3, top left). In this regime
we transform to the pulse’s comoving frame ŷy � y� ct
and eliminate � � �� 	 _�� to get

c	 _��0 � �
�

�n�
�

g� _���n�� � 	 _��
�n�

�D	 _��00; (7)

�cn0 � �
n
n

�
N� _��n�

n
(8)

with constant parameters c and �. For a given �, there
exists a single selected speed c��� for which Eqs. (7) and
(8) allow a high shear rate pulse traveling through a low
shear rate background (i.e., a ‘‘homoclinic orbit’’ con-
necting the low shear fixed point to itself). The corre-
sponding global shear rate 	_��_����� �

R
L
0 dy _���y� then

follows by integrating under this pulse. In fact, the results
of Fig. 3 (top right) were obtained at fixed 	_��_��, with the
system evolving to the stress given by the inverted rela-
tion �� 	_��_���. We used AUTO97 [30] to check that the homo-
clinic orbits of Eq. (8) coincide with these numerical
084502-3



FIG. 5. Shear rate density plots for n � 0:13, D � 0:0016.
Greyscale ranges are _�� � 0:4–12:9 (a); _�� � 0:3–23:0 (b).
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results. The locus of the maxima _��h��� of these pulses is
marked in Fig. 4. The data points for _�� > _��h in Fig. 4
arise during wall collisions; correspondingly, their den-
sity is smaller than for _�� < _��h.

To summarize, we have constructed a simple model of
shear banding in which the high shear branch of the
underlying constitutive curve is rendered unstable by a
coupling between flow and microstructure. Within this
model, we have found a rich variety of spatiotemporal
oscillatory and rheochaotic flows, many resembling ex-
perimental observations in shear banding systems. It
remains an open challenge to delineate more fully the
spectrum of mechanisms governing rheochaotic banded
states. Extension to higher dimensions, allowing fluctua-
tions along the plane of the interface would be interesting.
Within the present one-dimensional approach, general-
ization to shear thickening systems [25], curved Couette
geometries, and vorticity banding is under way [31].

We thank A. A. Aradian, P.T. Callaghan, M. E. Cates,
E. Knobloch, A. M. Rucklidge, and J.-B. Salmon for
interesting discussions, and EPSRC GR/N11735 for
funding.

Note added.—After this paper was received,
Chakrabarti et al. submitted a study of spatiotemporal
chaos [32] in a model of liquid crystals that had been
demonstrated to show temporal chaos in its local dynam-
ics [19].
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