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Dispersion and Mixing in Quasigeostrophic Turbulence
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The dynamics of passive Lagrangian tracers in three-dimensional quasigeostrophic turbulence is
studied numerically and compared with the behavior of two-dimensional barotropic turbulence. Despite
the different Eulerian properties of the two flows, the Lagrangian dynamics of passively advected
tracers in three-dimensional quasigeostrophic turbulence is very similar to that of barotropic turbu-
lence. In both systems, coherent vortices play a major role in determining the mixing and dispersion
properties. This work indicates that recent results on particle dynamics in barotropic, two-dimensional
turbulence carry over to more realistic baroclinic flows, such as those encountered in the large-scale
dynamics of the atmosphere and ocean.
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; (2) modest effect on the spectrum shape and causes no quali-
tative changes in the Eulerian evolution [4,5].
The planetary-scale dynamics of the atmosphere and
ocean is dominated by the rotation of the Earth and by
strong, stable stratification. As a result, the vertical veloc-
ity is significantly smaller than the horizontal, and the
large-scale motion is approximately two dimensional [1].
A simple model of this flow is a single layer of homo-
geneous fluid, described by the two-dimensional (2D)
barotropic Navier-Stokes equations [2,3].

A barotropic model, however, lacks important aspects
of the dynamics of geophysical flows, notably, the pres-
ence of baroclinic instability. A more realistic model is
three-dimensional, baroclinic, quasigeostrophic (QG)
turbulence, which still has zero vertical velocity but
includes the vertical extent of the fluid. Several studies
have focused on the Eulerian evolution of QG turbulence
[4–7], but an analysis of its Lagrangian properties is still
missing. A crucial question is whether the Lagrangian
properties found in barotropic 2D flows still hold in
baroclinic QG turbulence. In this Letter we study the
dispersion and mixing behavior of Lagrangian tracers
in uniformly stratified QG flows and compare with the
2D case.

We study the dynamics of freely decaying turbulence
on the f plane, where the Coriolis parameter f is constant.
2D and QG have the same advection equation,
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the 2D horizontal Jacobian operator, and D is a generic
dissipation term representing eddy viscosity. In QG flows,
q is the 3D potential vorticity,
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where the first term, ! � r2
2D , is the relative vorticity

defined in terms of the 2D horizontal Laplacian, and the
second term is the contribution of vortex stretching, with
S � N2=f2, where N is the buoyancy frequency of the
mean density stratification. Here we consider a uniformly
stratified flow, and we assume constant S. In these con-
ditions the coordinate transformation z!

���
S

p
z reduces

the operator in Eq. (2) to the isotropic three-dimensional
Laplacian, r2

3D. In 2D flow, q is the relative vorticity,
q2D � !.

In the absence of dissipative processes, both systems
conserve the total energy, E� � 1

2V�

R
dx�jr� j

2, and the
enstrophy, Z� � 1

V�

R
dx�q2�, where, for � � 2D or 3D,

V� is the area or volume of the domain and x� is a two- or
three-dimensional position vector, respectively. These
conservation laws imply a preferential transfer of energy
towards larger scales, an inverse cascade, and of ens-
trophy towards smaller scales, a direct cascade. For finite
viscosity, both the energy and the enstrophy are dissi-
pated. In the limit of vanishing viscous dissipation, how-
ever, these transfers lead to conservation of total energy
and finite enstrophy dissipation. This differs from three-
dimensional homogeneous isotropic turbulence where
enstrophy is not conserved for zero viscosity and energy
is not conserved for vanishing viscosity. To allow for a
quantitative comparison between QG and 2D flows, we
adopted a purely horizontal diffusion operator D �

��1�n�1�pr
2n
2Dq. It has been shown ([8] among others)

that at high resolution, the use of hyperviscosity (n > 1)
does not affect the statistical properties of the flow on
scales larger than the dissipative range. In the following,
we set n � 2 and �2 � 10�8. Similarly, changing the
dissipation operator from horizontal to isotropic has a
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The QG and 2D equations are numerically inte-
grated on a periodic domain, using the finite-difference
algorithm described in [9], with a horizontal resolution of
5122 grid points and, for QG, 256 grid points in the
vertical. In both flows, passive Lagrangian tracers are
advected by the horizontal Eulerian velocity.

The QG flow is initialized with a zero mean, Gaussian
vorticity field with random Fourier phases. The initial
energy spectrum is given by E�k� � C0k�=�k2� � k2�0 �,
with � � 10 and k0 � 22, and C0 such that

R
E�k�dk � 1.

During the initial evolution the flow self-organizes into a
collection of coherent vortices [4,5]. A three member
ensemble of 2D flows is initialized by using horizontal
sections of the QG stream function at time t � 5, past the
vortex formation period. Such initialization guarantees
identical kinetic energies, eddy-turnover time, Reynolds
number (Re), and relative vorticity field at t � 5 for QG
and 2D. At the same time, 2562 Lagrangian tracers are
randomly deployed on these three levels in QG and in the
three 2D simulations, and their positions are integrated
forward in time. The number of particles is large enough
to ensure convergence in the Lagrangian statistics con-
sidered. Eulerian velocities are interpolated at the particle
positions by using a local cubic interpolator. Using the
same initial stream functions highlights the different
evolution of QG and 2D flows. Indeed, the simulations
presented are explicitly constructed to have the maximum
similarity between QG and 2D at the deployment of the
tracers. In the course of time, the Eulerian statistical
properties of the QG and 2D flows gradually diverge
and the difference between the systems grows as they
evolve away from their initial conditions.

We first focus on the Eulerian characteristics of the
flows. After t � 5, the vortex population evolves through
mutual vortex advection and strong intermittent, inelastic
interaction of same-sign vortices [4–6]. Figure 1 shows a
3D visualization of potential vorticity q3D at t � 20.
Despite the mathematical and dynamical analogies be-
tween 2D and QG flows, there are quantitative differ-
ences in the stability properties of vortices and filaments
[7,10], in the merging mechanism [7], and in the decay
FIG. 1 (color online). q3D with transparency rendering at
t � 20.
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rate of the vortices [5]. The faster decay of the vortex
number in the QG flow is reflected by a faster enstrophy
decay. The total energy, on the other hand, is nearly
conserved in both systems. Figure 2 shows horizontal
sections of the relative vorticity field, at times t � 5,
when ! is the same for 2D and QG, and at time t � 20,
when the difference in vortex number is evident. At late
times, the background of the QG solution is populated
by a larger number of filaments which carry a signifi-
cant amount of vorticity and are bounded by curves of
local maxima of (potential) vorticity gradient. In the 2D
case, the background between the vortices is character-
ized by a low, more uniformly distributed vorticity con-
tent. Because of the higher probability of inelastic
interactions in QG, filaments are produced at a higher
rate. Analyzing their signature in the vorticity gradient
field, we find that they live longer than their 2D counter-
parts. In 2D, filaments are rapidly reduced through
stretching and dissipation, while in QG some individual
filaments can be tracked from t � 5 to the end of the
integration. Figure 3 shows the evolution of the one-point
probability density function (PDF) of the relative vortic-
ity field, averaged over the three selected levels in QG and
over the three realizations in 2D. In the 2D case, the tail
of the PDF exhibits little decay, while the central core of
the distribution narrows significantly with time [11,12].
In the QG case, the tail of the PDF decays faster, con-
sistent with the presence of fewer vortices, while the core
is slightly broader, consistent with a larger number of
filaments.

The observation that 3D vorticity filaments in QG
turbulence dissipate more slowly than their 2D counter-
parts indicates that QG dynamics is less efficient in trans-
ferring vorticity from the filaments to the dissipation
scale. This transfer, which is related to filament stretching
and shearing and is controlled by the large-scale strain
field induced by the vortices, depends on the Reynolds
number and on the range of the interactions [13]. In QG,
the Green’s function decreases as the inverse of distance,
while in 2D it is logarithmic. Therefore, for flows at the
same Re, QG vortices have a shorter range of interaction
and they induce in the background strain and adverse
shear which is weaker than that induced by their 2D
counterparts. Thus, the shearing effect of the vortices
on the filaments is weaker in QG than in 2D.

The Eulerian population of vortices and filaments
determines the Lagrangian dispersion properties of the
two flows. One measure of global dispersion is absolute
(or single-particle) dispersion [14]. Absolute dispersion
is defined as the average squared distance of the particle
positions at time t from their initial positions at time t0,
A2�t; t0� � hjx�t� � x�t0�j2i. At sufficiently small times
the absolute dispersion is ballistic, A2 � 2E�2, where E
is the average kinetic energy and � � t� t0. After a
sufficiently long time, in statistically stationary flows
with finite spatial correlation length, the velocities of
084501-2



FIG. 2. Relative vorticity in a selected
horizontal plane for the QG simulation
at times (a) t � 5 and (b) t � 20.
Panel (c) shows the relative vorticity
field at t � 20 for a 2D simulation ini-
tialized with the vorticity distribution
of panel (a).
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the particles become uncorrelated and the dispersion is
Brownian, A2 � 2K�, where K is the (constant) disper-
sion coefficient. In freely decaying turbulence, the
Brownian limit is not attained and the long-time limit
depends on the details of the flow. Similarly, Brownian
dispersion is rarely observed in mesoscale ocean flows,
where large-scale spatial and temporal inhomogeneities
prevent the presence of a well-defined Brownian regime.
Rather, in geophysical flows one is often interested in the
behavior of particle dispersion at intermediate times. In
2D turbulent flows, where vortices occupy a relatively
small area, absolute dispersion is dominated by particles
moving in the background turbulence outside the vortices
and an anomalous intermediate-time regime A2 / �5=4

appears [15]. When scaled to midocean conditions, this
regime is observed to hold for times ranging from a few
days to a few weeks, which is a time range of practical
interest. Indications of this anomalous dispersion regime
have been detected in the analysis of subsurface ocean
floats [16]. Figure 4 shows the absolute dispersion for
particles moving in QG and 2D, obtained by averaging
over all particles deployed at the three levels in QG and in
the three corresponding 2D solutions. Because of the
initial conditions, the ballistic dispersion regime is con-
strained to be identical for both systems. Surprisingly,
however, the similarity continues at larger times, well
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FIG. 3. Vorticity PDF at times t � 5 (dotted line), and t � 20
for the QG (solid line) and 2D (dashed line) cases, averaged
over three horizontal planes in QG, and over the three 2D
solutions.
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past the ballistic regime. Indeed, absolute dispersion in
QG is almost identical to that in 2D, with both display-
ing clear evidence of the anomalous dispersion regime
with A2 / �5=4.

Another measure of particles behavior is relative dis-
persion, which describes the average separation of par-
ticle pairs, R���2 � hjx� x0j2i, where x and x0 are the
positions of two (initially nearby) particles computed at
the same time. For 2D turbulence, classical dispersion
ideas predict R2 / �3 when the separation is in the en-
ergy cascade range [17] and exponential growth in the
enstrophy cascade range [18]. Numerical simulations and
experiments [19] confirm the presence of the �3 law, while
the exponential regime reduces to a short transient stage.
We calculate R2��� for both QG and 2D by adding a
companion to each particle at t0 � 5, with a separation
of one-quarter of the grid spacing randomly oriented in
space. Figure 4 shows the relative dispersion curves for
QG and 2D. Both QG and 2D show an intermediate
Richardson regime and display no substantial differences.

Another important Lagrangian property is mixing.
One quantitative measure of mixing commonly used in
2D turbulence is the maximum Lagrangian finite-time
Lyapunov exponent (FTLE),  , which gives a local de-
scription of the stretching experienced by a fluid particle
1e-05

0.0001

0.001

0.01

0.1

1

10

100

0.01 0.1 1 10

A
2 (

τ)
, R

2 (
τ)

τ

τ2

τ5/4

τ3
A2

R2 QG
2D

FIG. 4. Absolute dispersion, A2, and relative dispersion, R2,
vs the time interval � � t� t0, with t0 � 5. Solid lines refer to
QG and dashed lines to 2D. Dotted lines show the Richardson
prediction for relative dispersion, R2 / �3, and the ballistic
regime, A2 / �, and the intermediate anomalous regime,
A2 / �5=4, for absolute dispersion.
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FIG. 5. Probability distribution functions of the FTLE,  , for
the set of Lagrangian particles advected on three horizontal
planes of the QG simulation (solid lines) and in the corre-
sponding 2D simulations (dashed lines). The FTLE have been
computed over the finite time T � 0:25 starting at t � 6, 10,
15, and 19.75. The inset shows the evolution of the time integral
of the mean value of the FTLE, h�i�t�, as a function of time.
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[20]. Large values of  correspond to regions of high
strain which usually surround the vortices, while small
values correspond to either vortex cores or regions of the
background that are sufficiently far from the vortices or
filaments. Figure 5 shows the values of  , computed over
the short finite time T � 0:25, for all the particles de-
ployed in the three levels in QG and in the three 2D
solutions. Overall, the mixing properties, as measured
by the distribution of the FTLE’s, are nearly the same.
The PDF’s of  evolve similarly up to time t � 15. Later
on the 2D case displays a slight excess of large positive
FTLE’s and a deficit of small positive FTLE’s with re-
spect to the QG case, consistent with the growing differ-
ences between QG and 2D in the vortex number and in
filament populations.

This time approximately marks the end of the inter-
mediate regime where the Lagrangian properties are the
same in QG and 2D. The inset in Fig. 5 shows the mean
value of the time-integrated FTLE, h�i � 1=t

R
h idt,

which is very similar for the two flows.
In summary, uniformly stratified QG turbulence and

barotropic 2D turbulence display an extremely similar
Lagrangian dynamics at short and intermediate times.
Since we analyzed only one realization of the QG flow
and a few realizations of 2D flows, we cannot exclude that
other initial conditions could lead to different results.
However, since 2D turbulence has limited predictability,
there should be no significant dependence on the initial
conditions beyond the Lagrangian velocity decorrelation
time. Our results therefore indicate that, for both QG and
2D, the Lagrangian dynamics is governed by the coherent
vortices in a similar way, and the three dimensionality of
QG vortices does not play a relevant role in Lagrangian
dispersion. Although the initial conditions were chosen to
be the same for 2D and QG, the long-time evolution of the
084501-4
two flows diverges, and so does the Lagrangian dynamics.
On intermediate times, however, the Lagrangian dynam-
ics of QG and 2D remain extremely similar, and the
behavior previously detected in Lagrangian studies of
barotropic turbulence is also seen in more realistic 3D
QG flows. The local mixing properties, as measured by
finite-time Lyapunov exponents, are comparable, and the
absolute and relative dispersions are nearly identical.
When scaled to midocean conditions, this correspon-
dence holds for dispersion times up to several weeks.

This work thus suggests that recent results on the
dispersion and mixing properties of barotropic, vortex
dominated flows are also relevant for understanding
Lagrangian processes in baroclinic geophysical turbu-
lence at a low Rossby number in the atmosphere and
ocean.
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