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Stopping Light All Optically
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We show that light pulses can be stopped and stored coherently, with an all-optical adiabatic and
reversible pulse bandwidth compression process. Such a process overcomes the fundamental bandwidth-
delay constraint in optics and can generate arbitrarily small group velocities for any light pulse with a
given bandwidth, without any coherent or resonant light-matter interactions. We exhibit this process in
optical resonators, where the bandwidth compression is accomplished only by small refractive-index
modulations performed at moderate speeds.
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pulse with a given temporal duration and corresponding
bandwidth, the minimum group velocity achievable is

sion for all spectral components and reversibly com-
presses the pulse bandwidth.
The ability to drastically slow down the propagation
speed of light, and to coherently stop and store optical
pulses, holds the key to the ultimate control of light and
has profound implications for optical communications [1]
and quantum information processing [2,3]. In order to
reduce the group velocity of light coherently, there are
two major approaches, employing either electronic or
optical resonances. Using electronic resonances in atomic
systems, the group velocity of light can be decreased by
orders of magnitude [4]. Furthermore, with the use of
quantum interference, absorption at some electronic reso-
nances can be suppressed [5]. Dramatic slow down and
complete stop of light pulses can be accomplished by
converting optical signals into electronic coherences [6–
13]. The use of electronic states to coherently store the
optical information, however, imposes severe constraints.
As a result, only a few very special and delicate elec-
tronic resonances available in nature possess the required
properties. All the demonstrated bandwidths are far too
small to be useful for most purposes. The wavelength
ranges where such effects are observed are also very
limited. Furthermore, while promising steps were taken
for room temperature operation in solid-state systems, it
still remains a great challenge to implement such schemes
on-chip with integrated optoelectronics [12,13].

Consequently, it is of great interest to pursue the con-
trol of light speed using optical resonances in photonic
structures including microcavities [14] and photonic
crystals (PC) [15–17]. Photonic structures can be defined
by lithography and designed to operate at any wavelength
range. Ultrahigh quality-factor cavities have been real-
ized on-chip [18], and group velocities as low as 10�2c for
pulse propagation with negligible distortion have been
observed in PC waveguide band edges [19] or with
coupled resonator optical waveguides (CROW) [20–22].
Nevertheless, such structures are fundamentally limited
by the delay-bandwidth product [23]—the group delay
from an optical resonance is inversely proportional to the
bandwidth within which the delay occurs. Therefore, for a
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limited. In a CROW waveguide structure, for example,
the minimum group velocity that can be accomplished for
pulses at 10 Gbit=s rate at � � 1:55 �m is no smaller than
10�2c. For this reason, up to now, photonic structures
could not be used to stop light.

Here we introduce a set of general criteria to overcome
the fundamental limit due to the delay-bandwidth prod-
uct. These criteria enable the generation of arbitrarily
small group velocities for optical pulses with a given
bandwidth, while preserving the coherent information
entirely in the optical domain. We show that these criteria
can be achieved in optical resonators using only small
refractive-index modulations at moderate speeds, even in
the presence of losses. Also, since the bandwidth con-
straints occur in almost all resonant physical systems, our
approach has general applicability.

In order to coherently stop a pulse with a given band-
width, the following criteria must be satisfied.

(a) The system must possess large tunability in its
group velocity. To allow for a pulse with a given band-
width to enter the system, the system must possess an
initial state with a sufficiently large bandwidth (i.e., a
large group velocity as required by the delay-bandwidth
product) in order to accommodate all the spectral com-
ponents of the pulse. We design a system such that a small
refractive-index shift can change the group velocity by an
arbitrarily large orders of magnitude and that the group
velocity reduction is independent of losses.

(b) The tuning of the system should be such that the
bandwidth of the pulse is reversibly compressed. Such
bandwidth compression is necessary in order to accom-
modate the pulse as the system bandwidth is reduced.
Thus, the tuning process must occur while the pulse is
completely in the system and must be performed in an
adiabatic [24] fashion to preserve the coherent informa-
tion encoded. In our design, we use a translationally
invariant refractive-index modulation to conserve the
coherent information in each wave-vector component.
The modulation accomplishes coherent frequency conver-
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We exhibit these concepts in the system shown in Fig. 1,
which consists of a periodic array of coupled cavities.
Each unit cell of the periodic array contains a waveguide
cavity A, which is coupled to the nearest neighbor cells to
form a coupled resonator optical waveguide, and one or
more side cavities B1 and B2, which couple only to the
cavities in the same cell. The side cavities in adjacent cells
are placed in an alternating geometry in order to prevent
coupling between them.

For the simple case where only a single side cavity B
exists in each unit cell, the dynamics of the field ampli-
tudes an, bn for cavities A and B in the nth cell can be
expressed using coupled mode theory as

dan
dt

� i!Aan � i��an�1 � an�1� � i�bn � �Aan; (1)

dbn
dt

� i!Bbn � i�an � �Bbn: (2)

Here �, � are the coupling constants between the pairs of
cavities A-A and A-B, respectively. !A and !B are the
resonance frequencies, and �A and �B are the loss rates for
cavities A and B, respectively.

Since the system has translational symmetry along the
waveguide, the frequencies !�;k for the eigenstates of the
system can be related to a wave vector k as

!�;k �
1

2
f!A;k �!B � i��A � �B�

�
������������������������������������������������������������������������
�!A;k �!B � i��A � �B�	

2 � 4�2
q

g; (3)

where !A;k � !A � 2� cos�k‘� represents the frequency
band of the waveguide by itself. For concreteness, we
focus on the lower band !�;k, which at the band center
has a group velocity vg�,
FIG. 1. Schematic of a tunable microcavity system used to
stop light. The disks represent cavities, and the arrows indicate
available evanescent coupling pathways between the cavities.
The system consists of a periodic array of coupled cavities.
Each unit cell of the array contains a waveguide cavity A,
which couples to nearest neighbor cells via evanescent coupling
with a coupling strength �. Each waveguide cavity A is also
coupled to either one or more side cavities (with coupling
strength �i). The figure shows the case with two side cavities,
labeled B1 and B2.
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with � � !A �!B. When �  �j�j, the lower band
exhibits a large group velocity (vg� ’ 2�‘) and a large
bandwidth [Fig. 2(a)]. When � � j�j [Fig. 2(b)], the
group velocity at the band center (and also the bandwidth)
is reduced by a ratio of �2=�2 � ��A � �B�

3=�4�3�.
Importantly, the group velocity becomes independent of
loss when �A and �B are equal. Also, by increasing the
number of side cavities in each cell (Fig. 1), the achievable
minimum group velocity at the band center can be further
reduced to 2�‘

Q
r
i�1��i=��2, where r is the number of the

side cavities in each cell and �i is the coupling constant
between the �i� 1�th and ith side cavities as shown in
Fig. 1. Thus, the group velocity can be reduced exponen-
tially with a linear increase in system size, and arbi-
trarily large group velocity tuning can be accomplished
with small refractive-index variations that shift the reso-
nant frequencies.

In this system, a pulse can be stopped by the following
process: Initially �  �j�j; the lower band has large
bandwidth. By placing the center of !�;k at the pulse
carrier frequency !0 [Fig. 2(a)], the lower band can
accommodate the entire pulse, with each of its spectral
components occupying a unique wave vector. After the
pulse is completely in the system, we vary the resonance
frequencies until � � j�j [Fig. 2(b)], at a rate that is slow
compared with the frequency separation between the
bands. (The frequency separation reaches a minimum of
2j�j when � � 0.) The modulation of the cavity reso-
nances preserves translational symmetry. Therefore, cross
talk between wave vector components of the pulse is
FIG. 2. Schematic of the frequency bands !� and !� for the
system shown in Fig. 1 with a single side cavity in each unit
cell. !A and !B are the resonance frequencies for the wave-
guide cavities A and the side cavities B, and � is the coupling
constant between them. The widths of the lines represent the
widths of the frequency bands. (a) !A �!B  �j�j. The
frequency band !� exhibits a large bandwidth centered at
the pulse frequency !0. (b) !A �!B � j�j. The frequency
band !� exhibits a small bandwidth.
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FIG. 3 (color). Propagation of an optical pulse through a
coupled microcavity complex in a PC as the resonant frequen-
cies of the cavities are varied. The PC consists of 100 cavity
pairs. The pulse is generated by exciting the first cavity, and the
excitation reaches its peak at t � 0:8tpass, where tpass is the
traversal time of the pulse through the waveguide by itself.
Fragments of the PC are shown in (b). The three fragments
correspond to cavity pairs 3–6, 56–60, and 97–100. The dots
indicate the positions of the dielectric rods. The black dots
represent the cavities. (a) The dashed green and black lines
represent the variation of !A and !B as a function of time,
respectively. The blue solid line is the intensity of the incident
pulse as recorded in the first waveguide cavity. The red dashed
and solid lines represent the intensity in the last-waveguide
cavity, in the absence and in the presence of group velocity
reduction, respectively. The group velocity reduction occurs
from 1:0tpass to 1:5tpass. The pulse is then held near stationary in
the system until 6:0tpass. Afterwards, the pulse is completely
released at 6:5tpass. Open circles are FDTD results, and the red
and blue lines are from coupled mode theory. (b) Snapshots of
the electric field in the PC at the indicated times. Red and blue
represent large positive and negative electric fields, respec-
tively. The same color scale is used for all the panels.
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prevented during the tuning process. Also, the slow
modulation rate ensures that each wave vector component
follows only the lower band, with negligible scattering to
the upper band (i.e., the system evolves adiabatically
[24]). Consequently, the pulse bandwidth is reversibly
compressed via energy exchange with the modulator,
with all the information preserved. During the bandwidth
compression, the modulation need not follow any particu-
lar trajectory in time except being adiabatic and can have
a far narrower spectrum than the incident pulse.

We implement this system in a PC with a square lat-
tice of dielectric rods (n � 3:5) with a radius of 0:2a (a is
the lattice constant) in air (n � 1) (Fig. 3). The PC
possesses a gap for modes with electric field parallel to
the rod axis. Decreasing the radius of a rod to 0:1a
generates a single mode cavity resonant at !0 �
0:3224�2�c=a�. Two neighboring cavities A and the ad-
jacent cavities A and B couple through barriers of three
rods (‘ � 4a), with coupling constant � � � �
0:00371�2�c=a�. The resonant frequencies are tuned by
refractive-index modulation of the rods. We simulate the
entire process of stopping light for 100 cavity pairs with
the finite-difference time-domain (FDTD) method,
which solves Maxwell’s equations without approxima-
tion. The waveguide is terminated by introducing in the
last cavity a loss rate equal to the coupling constant �,
which provides 100% absorption for the waveguide mode.
The process for stopping light is shown in Fig. 3(a). We
generate a Gaussian pulse by exciting the first cavity. (The
process is independent of the pulse shape one chooses.)
The excitation reaches its peak at t � 0:8tpass, where tpass
is the traversal time of the pulse through the waveguide by
itself. While the pulse is generated, the waveguide is in
resonance with the pulse, and the side cavities are de-
tuned. The field is concentrated in the waveguide region
[Fig. 3(b), t � 0:8tpass], and the pulse propagates in the
waveguide at a high group velocity of 2�‘. Then we
gradually tune the side cavities into resonance with the
pulse while detuning the waveguide out of resonance,
until the field is almost completely transferred from the
waveguide to the side cavities [Fig. 3(b), t � 2:0tpass],
and the group velocity becomes greatly reduced. Empiri-
cally, we found that a simple modulation [ exp��t2=t2mod�]
with tmod � 10=� is sufficient. While modulation of only
either the side or the waveguide cavities is sufficient,
modulating both cavities with equal strength minimizes
the frequency shift required. With the waveguide out of
resonance, the pulse is held in the side cavities [Fig. 3(b),
t � 5:0tpass] and shows little forward motion over the
time period of 3tpass except phase change. After an arbi-
trarily selected delay of 5:0tpass, the pulse is released by
the same process repeated in reverse, with the side cavi-
ties gradually detuned off resonance while the waveguide
is tuned into resonance [Fig. 3(b), t � 6:5tpass]. The pulse
intensity as a function of time in the last waveguide
cavity is plotted in Fig. 3(a) and has the same shape as
both the pulse propagating through the waveguide by
083901-3 083901-3
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itself and the initial pulse. Thus, our simulation demon-
strates that the pulse is perfectly recovered without dis-
tortion after the intended delay of 5:0tpass, and the FDTD
simulation agrees perfectly with coupled mode theory. In
the FDTD simulations, we choose an index modulation of
8% and a modulation rate of 5 GHz to make the simula-
tion time feasible. The simulation demonstrates a group
velocity of 10�4c for a 4 ps pulse at 1:55 �m wavelength.
Such a group velocity is at least 100 times smaller than
the minimum group velocity achievable for such a pulse
in any slow-light structure.

In practical optoelectronic devices [25], the modulation
strength (�n=n) is approximately 10�4 at a maximum
speed exceeding 10 GHz. Since such modulation strength
is far weaker compared with the FDTD simulation here,
the coupled mode theory should apply even more accu-
rately in practice. Therefore, using coupled mode theory,
we simulated the structure in Fig. 1 with two side cavities.
We use �1 � 10�5!A, �2 � 10�6!A, a maximum index
shift of �n=n � 10�4, a cavity loss rate of � �
4� 10�7!A as demonstrated for on-chip microcavi-
ties [18], and � � 10�5!A to accommodate a 1 ns pulse.
The bandwidth compression occurs in two stages, first
by transferring the field from A to B1, and then from
B1 to B2. This process reduces the group velocity to be-
low 0:1 m=s. The same process reversed recovers the
original pulse without any distortion in spite of the
loss. At such low speeds, the storage times are limited
only by the cavity lifetimes independent of the pulse
bandwidths, which enable the use of high quality micro-
cavities to store short (large bandwidth) pulses coher-
ently. The losses can also be counteracted by using gain
mediums [26].

The required number of cavities is determined by the
length of the optical pulse in the waveguide and the
propagation distance during the first field transfer stage.
Using a large coupling between the side cavities B1 and
waveguide cavities A, a fast initial slow down of the
pulse is achieved without violating adiabaticity. For the
two-stage system presented above, the entire process of
slowing down and recovering requires 120 waveguide
cavities modulated below 1 GHz. Thus, chip scale imple-
mentation is foreseeable, promising on-chip quantum
information processing and dramatic enhancement of
nonlinear effects.

This work was supported in part by NSF Grant
No. ECS-0200445. The simulations were performed at
the Pittsburgh Supercomputing Center through the sup-
port of a NSF-NRAC grant.
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