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A simple model of the effect of polymer concentration on the amount of drag reduction in turbulence
is presented, simulated, and analyzed. The qualitative phase diagram of drag coefficient versus
Reynolds number (Re) is recaptured in this model, including the theoretically elusive onset of drag
reduction and the maximum drag reduction (MDR) asymptote. The Re-dependent drag and the MDR
are analytically explained, and the dependence of the amount of drag on material parameters is
rationalized.
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FIG. 1. Drag reduction in Prandtl-Karman coordinates [2].
As a function of Re the drag exhibits a (concentration inde-
pendent) transition to drag reduction. The amount of drag
reduction depends on the concentration until the asymptote
denoted by MDR is reached. The Prandtl-Karman law is the
Re-dependent drag of the neat fluid. The numbers indicate
flows on Re. For a pipe of radius R and length L, with �p,
�, and U being, respectively, the pressure drop across L,

concentrations of the polymer additive in weight parts per
million.
‘‘Drag reduction’’ refers to the intriguing phenomenon
when the addition of a few tens of parts per million (by
weight) of long-chain polymers to turbulent fluids can
bring about a reduction of the friction drag by up to 80%
[1–3]. The phenomenon is well documented since Toms
discovered it accidentally in 1949 while studying the
degradation of polymers. The phenomenon is important,
and had been used to reduce the drag in oil pipes and to
increase the jet height in fire engines. The pioneering
work of Virk [1,2] had systematized and organized a
huge amount of experimental information, but the fun-
damtental mechanism for the phenomenon has remained
under debate for a long time [3–5]. All the experimental
and many of the numerical [6–9] investigations of drag
reduction focused on channel and pipe geometries; re-
cently, however, it had been discovered by numerical
simulations [10] of model equations of viscoelastic flows
[like the finitely extensible nonlinear elastic-Peterline
(FENE-P) model] that drag reduction appears also in
homogeneous and isotropic turbulence when seeded
with polymers. This brought about a new focus to the
search for the mechanism for drag reduction, since the
analysis of model equations without wall effects should
suffice to uncover a mechanism. Indeed, in a recent paper
[11] the FENE-P equations were simplified further to a
shell model of viscoelastic flow which was shown to
exhibit drag reduction whose mechanism could be fully
explored analytically. In this Letter we present additional
crucial progress where we demonstrate and explain two of
the most prominent (and least understood) characteristics
of drag reduction, i.e., the onset [as a function of Reynolds
number (Re)] and the maximum drag reduction (MDR)
asymptote.

To set up the issues we reproduce in Fig. 1 a typical
experimental figure from Ref. [2] which refers to the
dependence of the friction (or drag) coefficient in pipe
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the fluid density, and the mean velocity over a section, the
drag coefficient f reads

f �
�p

�U2

R
L

�pipe flow�: (1)

Drag reduction is tantamount to, say, an increase in the
throughput U for a fixed pressure drop �p when polymer
is added to the working fluid. In Fig. 1 one sees that for low
Re there is no drag reduction: the drag coefficient of pure
water is unchanged by the addition of small concentration
of polymers. Then there is a sharp onset of drag reduction
at a value of Re that does not depend on the concentration.
From this point on the amount of drag reduction depends
both on the concentration of the polymer and on Re. It
was shown by Virk, however, that the amount of drag
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reduction asymptotes to an apparently universal curve
that cannot be exceeded by increasing the concentration
further. This asymptote is referred to as the MDR, and
was claimed to be insensitive to the nature of the polymer
used in the experiments. In spite of the ample experimen-
tal evidence, both the onset and the existence of the MDR
have not been theoretically understood. In this Letter we
wish to close this gap.

Our strategy is to explore simulationally and analyti-
cally simplified models of viscoelastic flows which in
spite of the simplification still represent the robust proper-
ties that we are after. As is well known, viscoelastic flows
are represented well by hydrodynamic equations in which
the effect of the polymer enters in the form of a ‘‘con-
formation tensor’’ R�r; t� which stems from the ensemble
average of the diadic product of the end-to-end distance
of the polymer chains. Flexibility and finite extensibility
of the polymer chains are reflected by the relaxation time
� and the Peterlin function P�r; t� which appear in the
equation of motion for R:
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�
�P�r; t�R�� � �20����; (2)

P�r; t� � ��2m � �20�=��
2
m � R���: (3)

In these equations �2m and �20 refer to the maximal and the
equilibrium values of the trace R��. Since in most appli-
cations �m 	 �0 the Peterlin function can also be written
approximately as P�r; t� 
 1=�1� �R��� where � �
��2
m . In its turn the conformation tensor appears in the

equations for fluid velocity u�r; t� as an additional stress
tensor:
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� �u � r�u � �rp� �sr
2u� r � T � F; (4)

T �r; t� �
�p
�

�
P�r; t�
�20

R�r; t� � 1
�
: (5)

Here �s is the viscosity of the neat fluid, F is the forcing,
and �p is a viscosity parameter which is related to the
concentration of the polymer, i.e., �p=�s � c where c is
the volume fraction of the polymer. Note that the tensor
field can be rescaled to get rid of the parameter � in the
Peterlin function, ~RR�� � �R�� with the only conse-
quence of rescaling the parameter �0 accordingly. These
equations were simulated on the computer in a channel or
pipe geometry, reproducing faithfully the characteristics
of drag reduction in experiments [6–8]. It should be
pointed out, however, that even for present day computers
simulating these equations is quite tasking. We therefore
simplify the model further.

In developing a simple model we are led by the follow-
ing ideas. First, it should be pointed out that all the
nonlinear terms involving the tensor field R�r; t� can be
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reproduced by writing an equation of motion for a vector
field B�r; t�, and interpreting R�� as the diadic product
B�B�. The relaxation terms with the Peterlin function are
not automatically reproduced this way, and we need to
add them by hand. Second, we should keep in mind that
the above equations exhibit a generalized energy which is
the sum of the fluid kinetic energy and the polymer free
energy which is sensitive to the degree of polymer
stretching by the turbulent flow. Led by these consider-
ations we write the following shell model, which general-
izes the one introduced in Ref. [11] and allows us to study
also the effects of the polymer concentration:

dun
dt

�
i
3
�n�u; u� �

i
3

�p
�
P�B��n�B;B� � �sk

2
nun � Fn;

dBn
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P�B�Bn � �Bk2nBn;

P�B� �
1

1�
P
n
B

nBn

: (6)

In these equations un and Bn stand for the Fourier am-
plitudes u�kn� and B�kn� of the two respective vector
fields, but as usual in the shell model we take n �
0; 1; 2; . . . , and the wave vectors are limited to the set
kn � 2n. The nonlinear interaction terms take the explicit
form

�n�u;B��kn��1�b�un�2B

n�1��2�b�u
n�1Bn�2�

�kn�1��2b�1�u
n�1Bn�1��1�b�un�1B


n�1�

�kn�2��2�b�un�1Bn�2��2b�1�un�2Bn�1�;

(7)

with an obvious simplification for �n�u; u� and �n�B;B�.
Here b is a parameter taken below to be �0:2. In accor-
dance with the generalized energy of the FENE-P model,
our shell model has also the total energy
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2
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junj2 �
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�
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n

jBnj2
�
: (8)

The second term in the generalized energy contributes to
the dissipation a positive definite term of the form
��p=�

2�P2�B�
P
njBnj

2. With �p � 0 the first of Eqs. (6)
reduces to the well-studied Sabra model of Newtonian
turbulence [12].We therefore refer to the model with �p �

0 as the SabraP model (the Sabra model with polymers).
As in the FENE-P case we consider �p=�s to be c. All the
simulations below are performed with a constant rate of
energy input, choosing Fn �  =u
n for n � 0; 1 and zero
otherwise.

In [11] it was shown that this shell model exhibits drag
reduction, and the mechanism for the phenomenon was
elucidated. The basic phenomenon is exhibited well by
the spectra of the un and Bn fields which are presented at
one value of the parameters in Fig. 2. The spectra for the
Sabra model (dashed line) and the SabraP model (line)
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FIG. 3. Upper panel: Drag as a function of log10�Re� includ-
ing the laminar and the turbulent regimes. Both regimes agree
with the Eqs. (11) and (12). Lower panel: Blowup of the
turbulent regime. In both panels the upper straight line indi-
cates the drag of the neat fluid, whereas the MDR is seen as the
convergence of the drag data for large concentrations.
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FIG. 2. Power spectra of the SabraP model (line) and the
Sabra model (dashed line) for  � 0:001, �s � 10�6, and � �
0:4. The dashed line with symbols represents the power spec-
trum of the Bn field.
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are compared for the same amount of power input per
unit time. The discussion [11] of the spectra revolves
around the typical Lumley scale kc which is determined
by the condition [4]

u�kc�kc 
 ��1: (9)

For kn 	 kc the decay time � becomes irrelevant for the
dynamics of Bn. The nonlinear interaction between un
and Bn at these scales results in both of them having the
same spectral exponent which is also the same as that of
the Sabra model. The amplitude of the un spectrum is,
however, smaller in the SabraP model compared to the
Sabra case, since the Bn field adds to the dissipation. On
the other hand, for kn � kc the Bn field is exponentially
suppressed by its decay due to �, and the spectral expo-
nent of un is again as in the Sabra model. Drag reduction
comes about due to the interactions at length scales of the
order of kc which force a strong tilt in the un spectrum
there, causing it to cross the Sabra spectrum, leading to
an increase in the amplitude of the energy containing
scale. This is why the kinetic energy is increasing for the
same amount of power input, and hence drag reduction.
Note that a very similar spectral crossover had been
documented also in experiments [13] and in the FENE-
P model in channel flow simulations [9].

The qualitative phenomena that we are about to explain
in this Letter are demonstrated in the simulational results
presented in Fig. 3. Here we show the drag coefficient f as
a function of Re for the Sabra and for the SabraP models
for various values of the concentration. The drag coeffi-
cient is computed in analogy to Eq. (1) as

f �

P
n
Fnu



n

�
P
n
junj

2�3=2k0
�our model�: (10)
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We observe all the phenomena discovered by Virk: (i) For
the model of the neat fluid the drag has a laminar branch
and a turbulent branch, with a sharp transition between
them. (ii) For the model of the viscoelastic flow in the
laminar region there is no drag reduction; the laminar
branch is not changed by the addition of polymer with
any concentration. (iii) Drag reduction has an onset that is
independent of the concentration of the polymer. (iv) As
the concentration increases, the amount of drag reduction
increases, but (v) there exists an asymptote which is not
exceeded when the concentration is increased. In other
words, our simple model appears to reproduce extremely
well the phenomena that were uncovered in so many
experiments as summarized by Virk.

Next we explain all these observations. First we
rationalize the Re dependence of the friction factor in
the Sabra model of the neat fluid. For low Re the nonlinear
terms �n�u; u� are negligible compared to the viscous
term. With forcing only on the largest scale k0 we can
evaluate
078302-3
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�sk
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� Re�1; for Re small:

(11)

For large Re we have the exact result [12] that the
third order correlation function S�3�n � Imhun�1unu



n�1i �

C �##=kn with �## being the mean energy flux and C a known
constant (the analog of the 4/5th law for Navier-Stokes
turbulence).We therefore expect the friction factor to tend
to a constant value for large Re (up to terms � ln Re),

f� Re0; Re large: (12)

Equations (11) and (12) (which are the analogs of the
Prandtl-Karman law for pipe flows) are well borne out by
the data in Fig. 3 for the model of the neat fluid. The
laminar branch, which is exponential in these coordinates
[f� expf� log�Re�g], is unaffected by changing the con-
centration c. The transition between the two branches is
expected when turbulence sets in, i.e., for Re such that the
dissipative terms just begin to be overwhelmed by the
nonlinear interactions. Thus, point (i) is understood. Note
that similar arguments will hold for the FENE-P equa-
tions in homogeneous flows. Points (ii) and (iii) are ex-
plained as follows: we said above that drag reduction
comes about due to the interaction between the two dy-
namical fields at a scale of the order of kc. Clearly, as long
as kc exceeds the dissipative scale kd of the un field, no
interaction between the two fields can be of any signifi-
cance. Since kd is of the order of kd � k0Re3=4, we can
expect a concentration independent onset of drag reduc-
tion when kc 
 kd. Using un � u0�kn=k0��1=3, kc can be
estimated as kc � k0��u0k0��3=2, and we end up with a
prediction for the onset of drag reduction when

R e 
 ��u0k0�
�2: (13)

This prediction is well borne out by our simulations
(because of the space constraint we do not display simu-
lations at different values of � and k0). Again we point out
that similar arguments can be presented for the FENE-P
model as well.

Point (iv) is obvious—when the concentration in-
creases, the mechanism discovered in [11] comes into
play. What remains to be explained is the asymptotic
MDR. This also follows directly from the analysis of
the equations. Consider Eqs. (6) for two values of the
parameter �p, ��1�p � ��2�p , with y2 � ��1�p =�

�2�
p . Rescaling

Bn according to Bn � y ~BBn, we see that the Peterlin func-
tion tends to unity when y! 0,

P� ~BB� �
1

1� y2
P
n
j ~BBnj

2
! 1; when y! 0: (14)
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When P� ~BB� 
 1 the dynamical equation for ~BBn is inde-
pendent of y due to its linearity, whereas the un equation
remains independent due to the rescaling:

i
3

��2�p
�
P�B��n�B;B� !

i
3

��1�p
�
P� ~BB��n� ~BBn; ~BBn�: (15)

Thus, increasing the concentration brings the dynamical
equations to an asymptotic concentration invariant form
and therefore to an asymptotic MDR. For the last time we
note that similar rescalings are also available in the
FENE-P equations, making the points discussed here
quite general for any sensible model of viscoelastic flow.

In summary, we have presented a simple model of drag
reduction for which the observed characteristics can be
explained on the basis of the equations of motion. It
remains to go back to channel and pipe simulations of
the FENE-P equations to demonstrate that the discussion
presented above includes the main phenomena observed
also there.
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