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Universal Features of Quantized Thermal Conductance of Carbon Nanotubes
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The universal features of quantized thermal conductance of carbon nanotubes (CNTs) are revealed
through a theoretical analysis based on the Landauer theory of heat transport. The phonon-derived
thermal conductance of semiconducting CNTs exhibits a universal quantization in the low-temperature
limit, independent of the radius or atomic geometry. The temperature dependence follows a single curve
given in terms of temperature scaled by the phonon energy gap. The thermal conductance of metallic
CNTs has an additional contribution from electronic states, which also exhibits quantized behavior up
to room temperature.
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temperature thermal conductance of CNTs is linear in
the temperature T and extrapolates to zero at T � 0. This

cancellation between the phonon group velocity, vm, and
the density of state, dk=d!m, and Eq. (1) is rewritten as
During the past two decades, electronic transport in
mesoscopic systems whose dimensions are much smaller
than a mean-free path of electrons has been extensively
studied experimentally and theoretically. One of the most
striking phenomena is that the electrical conductance is
quantized in multiples of the universal quantum, 2e2=h,
which is observed in a one-dimensional (1D) conductor
formed between two reservoirs [1].

In contrast, only a few studies on nanoscale thermal
transport phenomena, especially at low temperatures,
have been performed, because the experimental observa-
tion and evaluation of thermal transport quantities under
such conditions are hard to carry out. Recent advances
in nanotechnology, however, have made it possible to
investigate thermal transport phenomena in mesoscopic
and nanoscale ballistic systems experimentally. Schwab
et al. observed the universal quantum of thermal conduc-
tance, �2k2BT=3h, in nanosized narrow wires using a
sophisticated fabrication technique [2], and the value
observed is consistent with the theoretical prediction
proposed earlier by Rego and Kirczenow [3] and by other
theoretical studies [4,5]. However, an unequivocal verifi-
cation of the existence of quantized thermal conductance
in other nanostructures has not been obtained thus far, in
contrast to the quantization of electronic transport, which
has been observed in various systems. As local heating is
one of the key issues to be resolved in the development of
nanoscale devices, it is highly desired to clarify the
thermal properties of nanostructures.

Single-wall carbon nanotubes (CNTs), which are natu-
ral quantum wires of small size and high stiffness, are
considered most suitable for this purpose, having a large
phonon-mean-free path of the order of 1 �m [6,7]. Recent
experiments showed that CNTs have remarkable proper-
ties of thermal transport at low temperatures, reflecting
quantum effects in one dimension [7–9]. The low-
0031-9007=04=92(7)=075502(4)$22.50 
implies the existence of quantized thermal conductance
in CNTs.

In this Letter, we investigate the low-temperature ther-
mal conductance in single-wall CNTs sandwiched be-
tween hot and cold heat baths, and show not only that
the thermal conductance in CNTs is quantized, but also
that the phonon contribution to the thermal conductance
has universal features that depend only on the tube radius
and not on the chirality. In contrast, the thermal conduc-
tance by electrons is found to be critically dependent on
the chirality, equivalent to the electronic states.

As in previous theoretical studies on quantized thermal
conductance [3–5], the present study begins with a
method analogous to the Landauer theory of electronic
transport, since a crude formulation of phonon thermal
conductance based on a conventional argument of the
kinetic theory of gases is not applicable to ballistic pho-
non systems. The thermal current density of the 1D pho-
non system formed between two (hot/cold) heat baths is
described as the Landauer energy flux, which is given by

_QQ ph �
X
m

Z 1

0

dk
2�

	h!m�k�vm�k�

� ���!m; Thot� � ��!m; Tcold���m�k�; (1)

where m is a phonon mode, 	h!m�k� is a phonon energy
dispersion of wave number k, vm�k� � d!m�k�=dk is a
phonon group velocity, ��!m; T�� � �exp� 	h!m=kBT�� �
1��1 is the Bose-Einstein distribution function of pho-
nons in heat baths, and �m�k� is the transmission proba-
bility between the system and heat baths [3].

The evaluation of the integration in Eq. (1) is, in
general, very difficult, and it requires a knowledge of
the frequency, !m�k�, and the transmission probability,
�m�k�, as a function of m and k. However, changing the
integration variable in Eq. (1) from k to !m leads to a
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FIG. 1. Low-energy phonon dispersion curves for a �10; 10�
carbon nanotube. Four acoustic modes are present: a longitu-
dinal acoustic mode, doubly degenerate transverse acoustic
modes, and a twisting acoustic mode (in order from the top).
The inset shows the energy gap 	h!op of the lowest optical
modes.
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d!m

2�
	h!m

� ���!m; Thot� � ��!m; Tcold����!m�; (2)

where !min
m and !max

m are the minimum and maximum
angular frequencies of the mth phonon dispersion,
respectively. It is noted that this form is independent
of the energy dispersion except for !min

m and !max
m .

Furthermore, imposing the condition of the limits
of linear response, �T 	 Thot � Tcold 
 T 	 �Thot �
Tcold�=2, and the limit of adiabatic contact between the
system and heat baths, ��!m� � 1, the thermal conduc-
tance, �ph � _QQph=�T, is given as a form of an elementary
integration:

�ph �
k2BT
2� 	h

X
m

Z xmax
m

xmin
m

dx
x2ex

�ex � 1�2
: (3)

Performing the integration in Eq. (3), we finally derive an
analytical form of the thermal conductance, which is
easily applicable to various 1D ballistic phonon systems,
�ph � �min

ph � �max
ph :

��
ph �

2k2BT
h

X
m

�
��2; e�x�m� � x�m��1; e�x�m�

�
�x�m�2

2
��x�m�

�
: (4)

Here, � denotes ‘‘min’’ or ‘‘max,’’ ��z; s� �
P

1
n�1�s

n=nz�
is the Appel function, and x�m � 	h!�

m=kBT. In particular,
a gapless mode with !min

m � 0 contributes a universal
quantum of �0 � �2k2BT=3h to the thermal conductance.

The thermal conductance in CNTs can be obtained by
substituting !min

m and !max
m for all phonon modes m into

Eq. (4). The phonon energy dispersions for CNTs can be
obtained by diagonalizing the dynamical matrix con-
structed with the scaled force-constant parameters
[10,11]. Figure 1 shows energy dispersion curves for the
region near the � point (k � 0) for a CNT with chiral
vector Ch � �10; 10�, where jTj denotes the magnitude of
the unit vector along the tube axis. Here, the chiral vector
�n;m� uniquely determines the geometrical structure of
CNTs [11,12]. The figure shows four acoustic modes with
linear dispersion: a longitudinal acoustic mode, doubly
degenerate transverse acoustic modes, and a twisting
mode. The lowest optical (E2g Raman active) modes are
doubly degenerate and have an energy gap of 	h!op �
2:1 meV at the � point. The gap, 	h!op, depends only on
the tube radius R and decreases approximately according
to 1=R2 as shown in the inset of Fig. 1 [10,11]. These
modes always lie in low-energy dispersion relations, in-
dependent of the tube geometry such as radius or chirality.

Figure 2(a) shows the temperature-dependent thermal
conductances, normalized to a universal value of 4�0 (as
explained later). The calculated values approach unity in
the low-temperature limit, indicating that the phonon
thermal conductance of CNTs is quantized according to
a universal value of 4�0, independent of the shapes or
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atomic geometry. The quantization of thermal conduc-
tance originates from low-energy excitations of long-
wavelength acoustic phonons (four branches in Fig. 1) at
temperatures sufficiently low that the two lowest optical
modes with an energy gap, 	h!op, are not excited (lowest
gapped branch in Fig. 2). The quantization can also be
derived analytically from Eq. (4). Only the first term,
��2; 1�, contributes to the conductance at the low-
temperature limit, leading to 4��2k2BT=3h� � 4�0. Here,
4 represents the number of acoustic branches.

It may be difficult to observe the above features ex-
perimentally, because of the effects of phonon reflections
at the contacts where the CNT connects to the heat baths.
We, however, expect that the observation of the above
feature must be possible, judging from the theoretical
study of Rego and Kirczenow [3] which shows that, for
quantum wire with a small cross section, reflectionless
contact is realized when the connection is extremely
smooth. For CNTs, such a smooth contact on the atomic
scale may be formed between a silicon carbide (SiC)
surface and a CNT grown on it, because the interface
between the SiC and CNT may have little strain owing to
their similar bond lengths. Of course, detailed theoretical
and numerical works are necessary in order to fully
understand the effects of phonon reflections at the con-
tacts on thermal conductance in CNTs.

Another important finding is that the different curves
of temperature-dependent thermal conductance for
various CNTs seen in Fig. 2(a) exhibit a universal behav-
ior when a scaled temperature is introduced, �op �
kBT= 	h!op. Taking account of the four acoustic and two
lowest optical modes and substituting the values of !min

m
for these branches at the � point into the formula of
Eq. (2), the thermal conductance can be given in the
075502-2
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FIG. 2. (a) Low-temperature phonon-derived thermal con-
ductance for various types of carbon nanotubes (CNTs) with
several chiral vectors �n;m�. (b) Thermal conductance as a
function of temperature scaled by the energy gap of the lowest
optical mode.
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following simple form:

�ph
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�2 e
�1=�op
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1�
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�op
�

1

2�2op

�
: (5)

The curves in Fig. 2(a) are replotted against the curve of
Eq. (5) with scaled temperature �op in Fig. 2(b). It is
evident that all curves (only three curves are shown for
clarity) fall on a single curve coinciding with the curve of
Eq. (5) in the low-temperature limit. The curves turn
upward at around �op � 0:14 from a linear region in
this plot (quantization plateau), with the plateau width
determined by the tube radius according to the relation
1=R2 (see result in the inset of Fig. 1). This universal
behavior of the thermal conductance of CNTs indicates
that low-temperature phonon transport is characterized
by the optical phonon energy gap, 	h!op, which is deter-
mined only by the tube radius, as shown in the inset of
Fig. 1. This theoretical result supports both the experi-
mental observations and the inferred tube-radius depen-
dence of the width of the thermal conductance plateau,
although direct comparison of the absolute values be-
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tween the experiment and theory is not possible due to
the unknown extrinsic factors in the experiment [8,9].

The electronic contribution to thermal conductance
can be determined in a straightforward manner by re-
placing the Bose-Einstein distribution function,
��!m; T�, in Eq. (1) with the Fermi-Dirac distribution
function, f��m; T� � 1=�e��m���=kBT � 1�, and then substi-
tuting the electron energy bands, �m, into the formula.
According to this formulation, all conduction bands
crossing the Fermi energy level yield the same universal
thermal conductance (�0 � �2k2BT=3h) as that of pho-
nons, even though electrons obey different statistics. In
general, the quantum of thermal conductance should be a
universal value independent of particle statistics [3,13].

The behavior of the electronic thermal conductance in
CNTs depends on whether the CNT is metallic or semi-
conducting, which is sensitive to radius and chirality
[14,15]. For semiconducting CNTs, the electronic thermal
conductance should vanish roughly exponentially accord-
ing to T ! 0, having an energy gap of the order of 0.1 eV
[16–18]. For metallic CNTs, two linear energy bands
crossing the Fermi level at k > 0 [11] contribute to the
electronic thermal conductance at low temperatures, re-
sulting in a universal value of �el � 4�0, where the factor
4 represents the number of two spin-degenerate channels
crossing the Fermi level. This result also satisfies the
Wiedemann-Franz relation between electrical conduc-
tance and electronic thermal conductance [19–21]. The
total thermal conductance of metallic CNTs is given by
� � �el � �ph � 8�2k2BT=3h at low temperatures.

Finally, a significant difference was recognized be-
tween the widths of the quantization plateau for phonons
and electrons in metallic CNTs. The characteristic energy
for phonon transport at low temperature is 	h!op, typically
a few meV, as described in Fig. 2(b). However, the char-
acteristic energy for electrons is of the order of 0.1 eV,
corresponding to the energy at a Van Hove singularity
measured from the Fermi level [22]. Consequently, the
quantized nature of thermal conductance caused by elec-
trons is predicted to survive up to room temperature, at
which phonons already cease to exhibit thermal quanti-
zation, giving rise to high thermal conductance. In other
words, the electronic contribution to thermal conductance
is negligible compared to that from phonons at moderate
temperatures. Figure 3 illustrates the temperature depen-
dence of the ratio of thermal conductance �el=�ph for
electrons and phonons. The ratio observed experimentally
[7] is 1 order of magnitude lower than the present value.
The discrepancy is attributed to the theoretical treatment
of CNTs as purely metallic, whereas only a certain frac-
tion (  1=3) [11,14] of the crystalline ropes of CNTs in
the experiment will be metallic and contribute to �el.

It is noted that decisively different behaviors of thermal
conductance are seen between single-wall and multiwall
CNTs. In the case of multiwall CNTs, recent measure-
ments showed that their thermal conductivity increases as
T2 at low temperature [23,24], suggesting that they act
075502-3
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FIG. 3. Ratio of thermal conductance by electrons, �el, to that
by phonons, �ph, for a �10; 10� CNT. The inset gives results at
low temperatures on an expanded scale.
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essentially as two-dimensional systems for phonon trans-
port, and displays a single peak near the room tempera-
ture due to Umklapp scattering [24]. On the other hand,
such a peak has not been observed thus far for single-wall
CNTs. This, together with the large phonon-mean-free
path of the order of 1 �m [6,7] for single-wall CNTs,
justifies the neglect of the effect of the Umklapp scatter-
ing process in our approach. To develop a theory for
multiwall CNTs with taking the process into account
will be a challenge for future studies.

In summary, the universal features of quantized ther-
mal conductance in single-wall CNTs have been shown
using a simple formula derived from the Landauer for-
malism of heat transport. Essentially, the gap of the
lowest optical mode depending only on the tube radius
characterizes the universal behavior of low-temperature
thermal conductance by phonons in CNTs. Electrons
similarly contribute a universal quantum to the thermal
conductance in metallic CNTs. The formula derived in
the present study will facilitate study on the origin of
thermal conductance for various one-dimensional nano-
structures at low temperatures through consideration of
the universal features of thermal conductance as a func-
tion of temperature scaled by the energy gaps of electrons
or phonons at the long-wavelength limit. This line of
study is expected to afford guidelines for the thermal
management of various nanoscale electronic devices, in-
cluding CNTs, which will be crucial in the assembly of
fully functional devices in the future.
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