
P H Y S I C A L R E V I E W L E T T E R S week ending
20 FEBRUARY 2004VOLUME 92, NUMBER 7
Zonal-Flow Dynamics and Size Scaling of Anomalous Transport
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Nonlinear equations for the slow space-time evolution of the radial drift-wave envelope and zonal
flow amplitude have been self-consistently derived for a model nonuniform tokamak equilibrium
within the coherent four-wave drift wave-zonal flow modulation interaction model of Chen, Lin, and
White [Phys. Plasmas 7, 3129 (2000)]. Solutions clearly demonstrate turbulence spreading due to
nonlinearly enhanced dispersiveness and, consequently, the device-size dependence of the saturated
wave intensities and transport coefficients.
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model, not only the drift-wave (pump) radial envelope short radial scale, instead, is associated with the parallel
The dependence of plasma confinement on the device
size is obviously a very crucial issue in fusion energy
research. Heuristic estimates of transport coefficients,
based on random walk arguments [1], are commonly
used and yield Bohm-like transport, � / �B �
�cT=eB�, when the step size is taken to have macroscopic
scaling and the time step is estimated with the inverse
linear growth rate. Meanwhile, diffusion coefficients are
expected to scale as gyro-Bohm, � / �GB � ���B, when
the step size is assumed to be microscopic. Here �� �
�i=Lp with �i and Lp being, respectively, the ion Larmor
radius and the plasma inhomogeneity scale length.
However, recent experimental evidence of Bohm-like
transport was obtained on the Joint European Torus [2]
as well as on DIII-D [3], even for microscopic scaling of
plasma turbulence. This fact clearly demonstrates the
validity limits of random walk estimates of plasma trans-
port and, at the same time, provides a challenging prob-
lem to plasma theory which has recently received
increasing attention (see, e.g., Ref. [4] and references
therein). At present, however, most of the analyses are
based on massive numerical simulations, except in a few
cases [5,6]. The need for more fundamental theoretical
investigations of transport size scaling is the main moti-
vation for this work.

Assuming drift waves are responsible for the anoma-
lous transport, size scaling can be reduced, in the simplest
model, to the dependence of drift-wave fluctuation inten-
sity on ��. The coherent four-wave drift wave-zonal flow
modulation interaction model of Chen, Lin, and White
[7] has captured the essential features observed in global
gyrokinetic simulations in the �i=Lp ! 0 limit. We are
thus motivated to adopt the same model as a theoretical
paradigm, including finite Lp (i.e., finite ��) plasma in-
homogeneities. In this finite-�� coherent four-wave
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will be localized, leading to reduction in the modula-
tional instability growth rate due to the finite interaction
region, but more interestingly the damped pump and
sidebands will disperse outward leading to radial spread-
ing of the drift-wave turbulence, qualitatively similar to
that observed in recent simulations [4]. As we show in the
following, this turbulence characteristic behavior cru-
cially depends on the wave dispersive properties of the
radial envelope, which, in turn, depend intrinsically on
the toroidal geometry of the considered system. As a
consequence, the model we propose here predicts that
numerical simulations of turbulent transport in cylindri-
cal plasmas should be generally and profoundly different
from those in a torus.

Following the theoretical formalism introduced in
Refs. [7,8], we assume that fluctuating fields are given
by a single n � 0 drift wave, �
d, and a zonal (n �
m � 0) scalar field perturbation �
z:

�
d � �
0 � �
� � �
�;

�
0 � ein’
X
m

A0;me
�im#
0�nq�m; r� � c:c:;

�
	 � e	in’
X
m

A	;me
im#
	�nq�m; r� � c:c:;

�
z � Az�r� � c:c:;

(1)

where m and n are, respectively, poloidal and toroidal
mode numbers. To simplify notations, time dependencies
are suppressed, while �r; #; ’� denote a right-handed
toroidal coordinate system and q is the tokamak safety
factor. Equations (1) explicitly indicate the existence of
two characteristic spatial scales for high-n drift waves [9].
The long scale reflects the characteristic radial variation
of A0, A	, Az, i.e., of mode envelopes and zonal flow, and
is typically shorter than the equilibrium scale Lp. The
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(to the ambient magnetic field) mode structure. It is
�n�1dr=dq and can be formally separated via the
Fourier transform [9]


0;	�nq�m; r� �
Z 1

�1

d��������
2�

p e�i�nq�m�� 0;	��; r�; (2)

where r dependencies reflect slow residual radial varia-
tions on the equilibrium scale.

The typical time for wetting the parallel mode struc-
ture is O�!�1�, the inverse mode frequency. Zonal flows,
meanwhile, have characteristic times that are long com-
pared with !�1 and typically of O���1

L �, the inverse
drift-wave growth rate. Assuming formal proximity to
marginal stability such that �L � j!j, nonlinear dynam-
ics, thus, affects only radial envelope and zonal flow
structures, leaving parallel mode structures essentially
unchanged. That is, radial envelope and zonal flow struc-
tures could be completely different from those predicted
by linear theory and need to be determined consistently
from nonlinear equations for their slow space-time evo-
lution. Detailed derivations of these equations will be
given elsewhere [6]. The basic approach for such deri-
vations, however, can be found in Refs. [7,8] in the
k2?�

2
i � 1 limit, k? being the perpendicular (to the am-

bient magnetic field) drift-wave vector. These equations
are the quasineutrality conditions for the fluctuating
fields of Eq. (1); explicitly written in a closed form via
direct solution of the nonlinear gyrokinetic equation [10].
This nonlinear system of partial differential equations
(2D in space plus time) can then be reduced to a nonlinear
system of pseudodifferential equations (1D in space plus
time) based on time and spatial scale separation of the
mode structures; i.e., �L � j!j and jn�1dr=dqj � �, �
being the characteristic width of the radial envelope and
zonal flow structures. The parallel mode structures
 0��; r�,  	��; r� are, thus, given by the linear theory,
and one may adopt eikonal ansatz for radial envelopes

A0;m � A0�r� � ei
R
n�kdq;

A�
�;m � A�;m � A��r� � ei

R
n�kdq�ei

R
n�kzdq � c:c:�;

Az � ei
R
n�kzdq � c:c:

(3)

Note, in Eqs. (3), we take kz � kr, and assume
j@rkr=k

2
r j � 1 and j@rkz=k

2
z j � 1 for consistency.

Here, k�1
z � ��1

kz n
�1dr=dq and k�1

r � ��1
k n�1dr=dq,

2�k�1
z �k�1

r � are the characteristic wavelengths of zonal
flow (drift-wave) oscillations.Within this framework, one
can field line average the quasineutrality conditions for
drift-wave and zonal flow and reduce them to the follow-
ing standard form for k2?�

2
i � 1 [6–8]:

L PP � 2S@xZ; LSS � �P@xZ;

LZZ � 2Re�P�@xS� S@xP��:
(4)

Note that Eqs. (4) have the Reynolds-stress-like antisym-
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metric nonlinearity, as expected for electrostatic drift
waves in the k2?�

2
i � 1 limit [10,11]. The linear operators

LP, LS, LZ, meanwhile, are defined in terms of the local
drift-wave dielectric function D � DR�r; !; �k� �
iDI�r; !; �k�, with the wave frequency !0 and envelope
radial wave number �k0�r� given byDR�r; !0; �k0�r�� � 0.
More precisely,

LP;S � @' � 
��P;S � 2�1=2@x � i��(� )� � i@2x;

LZ � �@' � 
��z�;
(5)

where � � !=j�LP�x � 1�j is the mode frequency
normalized to the drift-wave growth rate, time is nor-
malized as ' � j�LP�x � 1�jt, � 
��P;S; 
��z� � ��LP;S; +z�=
j�LP�x � 1�j, +z being the zonal flow collisional damp-
ing, +z � �1:5,'ii��1 [12], with , � r=R0 and R0 the
tokamak major radius. Equations (5) include the leading
order relevant physical effects on the radial wave-packet
propagation along the linear characteristics, i.e., drive or
damping, group velocity, potential well, and focusing or
defocusing, respectively [6]. Here, the normalized fields
P, S, Z are related with A0, A�, Az as

e�A0; A��

Te
� 


�
1:6q2

-0,1=2
!0

@DR

@!0

Ti
Te

�
1=2�P;�iS�

s�1=2
;

eAz
Te

� 


�
!0

@DR

@!0

�
Z

s�1=2
;

(6)

where 
��!0=!ci��r=nq�i�
2�(1=2=�k0�, s�d lnq=d lnr,

-0 � 1� �p?i=�en0�
� [7], �p?i is the perpendicular
ion pressure fluctuation, n0 is the equilibrium density, and
other notations are standard. The normalized radial co-
ordinate x and the other quantities to be defined in Eqs. (5)
and (6) are given by

) �
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2DR=@�2k0
!0@DR=@!0
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( �
�2k0
2
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2
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)�1=2
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;

@
@x

�
(1=2�1=2

�k0n�dq=dr�
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(7)

In the cylindrical limit, @DR=@�k0 � 0 and ) � ( �
�1=2 � 0 as well as @x � 0 in Eqs. (5) and (7), demon-
strating the crucial importance of toroidal geometry.

Equations (4) generally require numerical solutions.
As a simple but relevant paradigm, we take Gaussian
nonuniformity profiles and quadratic dispersiveness for
numerical studies of Eqs. (4). That is, DR � !=!0�
1� �2k � V�x�, with the potential well V�x� �
1� exp��x2=L2�, where L is related with the equilibrium
profile scale as L � jndq=drjLp=�1=2. We also choose
DI � �� 
��P�x�=�� � ��1=���A exp��x2=L2� � 1� for
the pump and DI � � 
��d=�� for the sidebands such that
075004-2
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LP � @' � 
��P�x� � i�V�x� � i@2x;

LS � @r � 
��d � i�V�x� � i@2x; LZ � �@r � 
��z�:
(8)

From Eqs. (4) and (8), we readily recover the local limit
considered in Ref. [7] by taking L! 1, P � P0�t�, S �
S0�t� cos�0zx�, and Z � Z0�t� sin�0zx�. In that case, maxi-
mum zonal flow growth rate for fixed pump amplitude,
�z;max � jP0j

2 � 
��z, is expected for 02z � 
��d � �z;max,
i.e., for �kz � ��1=2� 
��d � �z;max�

1=2 [7].
Fast radial nonlinear oscillations of sidebands and

zonal flow on the characteristic scale � 0�1
z are a gen-

eral feature of the solutions of Eqs. (4) also for finite
L [6]. The spatially averaged drift-wave intensity on
this short scale is 
II � jP� 2Sj2 � jP0j

2 � 2jS0j
2 and,

for the fixed point solution as L! 1, 
IIf�jP0;fj
2�

2jS0;fj
2� 
��z� 
��d�2 
��P0�j 
��d� 
��P0j

�1, with 
��P0�A�1.
Assuming drift waves are responsible for anomalous
transport and that anomalous diffusion in an infinite
system has gyro-Bohm scaling, �1 � �GB � ��!ci�2

i ,
the present model yields � � �GB� 
II= 
IIf�. Thus, any size
scaling of anomalous transport can be reduced to the
dependence of 
II on L, and ultimately on ��. In order to
investigate this aspect, we have solved Eqs. (4) and (8)
numerically, keeping 
��z � 0:1, 
��d � 1, and � � 4 fixed,
while changing both 
��P0 � A� 1 and L to assess 
II
dependencies on these parameters. Snapshots of simula-
tion results for the wave fields at different times are
shown in Fig. 1 for A � 1:15 and L � 200. They clearly
demonstrate outward radial dispersion of pump, assisted
by the nonlinear modulation interaction and leading to
radial spreading of the drift-wave turbulence qualita-
tively similar to that observed in recent simulations by
Lin et al. [4]. Pump radial spreading is then followed by
similar spreading of zonal flow and sidebands, as indi-
cated in Fig. 2. Numerical solutions can be understood via
asymptotic analyses of Eqs. (4) and (8), employing the
optimal ordering @' � 
��z � 
��P0 � 
��d. Here, we omit
FIG. 1. Radial structure of the real part of the wave fields, ReP
' � 20 (left), ' � 50 (center), and ' � 125 (right), for A � 1:15 an
is also indicated.
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the details and report only some of the main results [6].
The leading order solution can be represented as P�
P0�x1; '�, S� S0�x2; '� cos�0zx�, Z� Z0�x2; '� sin�0zx�,
x1 � L1=2, x2 � L1=4, with 0z � 
��1=2

d for the fastest
growing zonal flow. Equations (4) and (8) then reduce
to S0 � ��1� i�P0Z0=2 
��

1=2
d ,

�@'� 
��P�x��Z2
0=2� i�V�x�� iZ2

0=2� i@2x�P0 � 0;

�@'� 
��z� jP0j
2 � 2 
���1

d jP0j
2@2x�Z0 � 0:

(9)

Zonal flows, thus, act both as nonlinear damping as well
as antipotential well on the drift-wave pump. Meanwhile,
the pump drives zonal flows nonlinearly, but it induces
nonlinear diffusion as well. Thus, zonal flows are gener-
ated via modulational instability and expel the pump,
explaining causality in the temporal sequence of Fig. 2,
which manifests itself in numerical simulations as turbu-
lence spreading [4,5].When radial spreading stops and the
fluctuation intensity has reached a time asymptotic value
(see right frame in Fig. 1), both pump and sideband are
characterized by complex radial structures on intermedi-
ate scales between fast nonlinear oscillations on � 
���1=2

d

and the size of the linearly unstable region � 
��1=2
P0 L. To

adequately evaluate the drift-wave intensity 
II, we have
taken a further spatial average of its value to make the
result reasonably independent of the averaging method
itself. Figure 3 shows the results of the spatially averaged
drift-wave intensity h 
IIi on 1=5 of the linearly unstable
domain [13]. In the L! 1 limit, numerical results re-
flect well the values for the fluctuation intensity expected
from the fixed point solution, i.e., h 
IIfi ’ 0:15; 0:18; 0:23,
respectively, for A � 1:15; 1:2; 1:3. The scaling of h 
IIi with
the system size is evident: it sharply increases with L
for L< 30, suggesting a Bohm-like scaling of anoma-
lous transport, and it eventually reaches the asymptotic
value set by the fixed point solution for L > 100, where
gyro-Bohm scaling is, indeed, expected. Because of the
(black), ReS (red), and ReZ (green), at three subsequent times
d L � 200. The radial domain where the pump is linearly stable
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FIG. 3. Drift wave intensity h 
IIi vs L after spatial averaging
on one-fifth of the linearly unstable domain. The three curves
refer to A � 1:15, A � 1:2, and A � 1:3.

FIG. 2. Characteristic squared width of the wave fields nor-
malized to L2 as a function of time, for A � 1:2 and L � 200.
Color code is the same as in Fig. 1.
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definition of L � nq��i=r��jsj=����
�1=2, values obtained

from simulation results depend intrinsically on dimen-
sionless physical parameters such as magnetic shear and
normalized poloidal wavelength. With the parameters of
global gyrokinetic simulations reported in Ref. [4], and
defining a as the tokamak minor radius, the present
results predict a Bohm-like to gyro-Bohm transition for
a=�i > 420 and saturation to gyro-Bohm transport for
a=�i > 1400, in remarkable agreement with the results
therein [4].

In summary, we have demonstrated that the coherent
four-wave drift wave-zonal flow modulation interaction
model of Chen, Lin, and White [7] not only captures the
essential features observed in global gyrokinetic simu-
lations in the �i=Lp ! 0 limit, but, by allowing non-
uniform equilibrium, accounts as well for size scaling
of drift-wave intensity and turbulent diffusion. This
model sets a hierarchy among the relevant nonlinear
interactions, making it possible to consistently derive
equations for the slow space-time evolution of drift-
wave radial envelope and zonal flow structures. In the
present approach, transport is a microscopic process
which is due to particle scattering in the ambient turbu-
lence. The scattering rate is set by the wave-particle
decorrelation time, due to the local parallel mode struc-
ture, and depends linearly on the turbulence intensity [6].
This theoretical prediction could be readily checked by
experimental measurements. In turn, the local turbulence
intensity depends on global equilibrium properties due to
turbulence spreading [5], ultimately causing turbulent
diffusion dependence on the system size. The predicted
075004-4
size scaling of drift-wave intensity is remarkably similar
to that of global gyrokinetic simulations [4].

This work was partly done with the support of U.S.
DOE Grant No. DE-FG03-93ER54271 and Contract
No. DE-AC02-76-CH03073 to the University of
California at Irvine and Princeton Plasma Physics
Laboratory.
[1] J. Connor and J. Taylor, Nucl. Fusion 17, 1047 (1979).
[2] R. Budny et al., Phys. Plasmas 7, 5038 (2000).
[3] G. McKee et al., Nucl. Fusion 41, 1235 (2001).
[4] Z. Lin et al., Phys. Rev. Lett. 88, 195004 (2002).
[5] Z. Lin et al., in Proceedings of the 19th IAEA Fusion

Energy Conference, Lyon, France, 2002 (Japan Atomic
Energy Research Institute, Tokai, 2003).

[6] F. Zonca, R. White, and L. Chen,‘‘Non-linear Paradigm
for Drift-Wave —Zonal Flow Interplay: Coherence,
Chaos and Turbulence.’’

[7] L. Chen et al., Phys. Plasmas 7, 3129 (2000).
[8] L. Chen et al., Nucl. Fusion 41, 747 (2001).
[9] Y. Lee and J.V. Dam, in Proceedings of the Finite-Beta

Theory Workshop, Varenna, 1977, edited by B. Coppi and
W. Sadowskii (U.S. Department of Energy, Washington,
DC, 1977), p. 93.

[10] E. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).
[11] A. Hasegawa and K. Mima, Phys. Rev. Lett. 39, 205

(1977).
[12] F. Hinton and M. Rosenbluth, Plasma Phys. Controlled

Fusion 41, A653 (1999).
[13] Z. Lin (private communication).
075004-4


