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Intriguing Heat Conduction of a Chain with Transverse Motions
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We study heat conduction in a one-dimensional chain of particles with longitudinal as well as
transverse motions. The particles are connected by two-dimensional harmonic springs together with
bending angle interactions. Using equilibrium and nonequilibrium molecular dynamics, three types of
thermal conducting behaviors are found: a logarithmic divergence with system sizes for large transverse
coupling, 1=3 power law at intermediate coupling, and 2=5 power law at low temperatures and weak
coupling. The results are consistent with a simple mode-coupling analysis of the same model. We
suggest that the 1=3 power-law divergence should be a generic feature for models with transverse
motions.
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To understand microscopic dynamical origin of heat
conduction is one of the long standing tasks in nonequi-
librium statistical mechanics. This problem has attracted
increasing attention in recent years [1–12]. The main
effort has been focused on the necessary and sufficient
conditions of the Fourier law of heat conduction in one-
dimensional (1D) systems. With strong numerical sup-
port, it is argued that chaos (or exponential instability)
is the necessary condition [1]. However, recent results in
different billiard gas channels show that even linear in-
stability, such as that found in generic polygonal billiards,
is sufficient for a normal diffusion and energy transport
obeying the Fourier law [2]. For some billiard gas chan-
nels, the heat conduction violates the Fourier law; it is
found that the thermal conductivity, �, changes with
system size N as, �� N�, with � � 2� 2=� [9], where
� is the exponent of the diffusion (�x2 � t�, 0< � � 2).

On the other hand, in 1D lattice models, it has been
proved that the momentum conservation leads to an
anomalous heat conduction [3]. However, its specific
form of divergence with system size (the value of �) is
still of considerable controversy [4–8]. Based on a renor-
malization group analysis for a 1D hydrodynamic fluid
model, it is argued that in a generic momentum conserv-
ing system, the thermal conductivity should be � / N1=3

[4]. Unfortunately, most existing numerical results do not
agree with this prediction for unknown reasons. A mode-
coupling theory analysis for the 1D Fermi-Pasta-Ulam
(FPU) model gives a divergent exponent 2=5 [5,6], which
is supported by numerics from different groups [7] and
confirmed recently by Pereverzev from the Peierls equa-
tion [12].

In this Letter, we would like to clarify what exponent,
1=3 or 2=5, is a generic exponent for the divergent ther-
mal conductivity in a many-body 1D chain with momen-
0031-9007=04=92(7)=074302(4)$22.50 
tum conservation. To this end, we consider a chain of N
point particles with mass m on a 1D lattice. For the sake
of generality, the particles have both longitudinal and
transverse motions. The lattice fixes the connectivity
topology such that only the neighboring particles interact.
The Hamiltonian is given by

H�p; r� �
X
i

p2
i

2m
�

1

2
Kr

X
i

�jri�1 � rij � a�2

� K�

X
i

cos�i; (1)

where the position vector r � �x; y� and momentum vec-
tor p � �px; py� are two dimensional; a is lattice constant.
The minimum energy state is at �ia; 0� for i � 0 to N � 1.
If the system is restricted to yi � 0, it is essentially a 1D
gas with harmonic interaction. The coupling Kr is the
spring constant; K� signifies bending or flexibility of the
chain, while �i is the bond angle formed with two neigh-
bor sites, cos�i � �ni�1 
 ni, and unit vector ni �
�ri=j�rij, �ri � ri�1 � ri. Our model is a simplification
of more realistic polymer chain models [13].

We determine the heat current in a temperature gra-
dient by nonequilibrium molecular dynamics (MD). The
system is set up with fixed leftmost and rightmost bound-
ary. The average distance between particles is set to a, the
zero-temperature equilibrium distance. A group of four
particles at the two ends are subject to heat baths at
temperature TL and TH, respectively. This is realized by
Nosé-Hoover thermostats. The rest of the particles follow
the equations of motion using a velocity Verlet algorithm.
We use small time step sizes h � 0:0005 to 0:0010.
Typical MD steps are 108 to 1010.

We use the following expression for local heat current
per particle:
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m ji �� �ri��pi � pi�1� 
G�i��� �ri�1��pi � pi�1� 
G�i� 1��� �ri�1�pi 
H�i� 2; i� 1; i� 1��

� �ri�pi 
H�i� 1; i� 1; i��� pihi; (2)
where G�i� � 1
4 Kr�j�rij � a�ni, H�i; j; k� �

K��ni � nk cos�j�=j�rkj, and the local energy per
particle hi �

1
4 Kr��j�ri�1j � a�2 � �j�rij � a�2� �

K� cos�i � p2
i =�2m�. This is derived from J �P

d�rihi�=dt, by regrouping some of the terms using
translational invariance. It satisfies the continuity equa-
tion in the long-wave limit.

We present our main numerical results in Fig. 1. The
data are obtained using 20 1GHz-Pentium PCs over six
months of CPU times. We plot the average heat current
multiplied by N, jN � �TH � TL��, in log-log scale
[Fig. 1(a)] and linear-log scale [Fig. 1(b)]. It is clearly
shown that three types of behaviors of the thermal con-
ductivity � are observed, the logarithmic divergence,
logN, power law � / N� with � � 1=3, as well as 2=5,
depending on the model parameters. Log-log plot shows
linear behavior for data set E, F, H, and J. At the parame-
ters of set E, excellent power-law dependence is found,
with an exponent of � � 0:334� 0:003 (using an error
weighted least-squares fit for N � 128). Set F is also in
good agreement with a slope of 1/3. On the other hand, for
set H and J, we have exponent � consistent with 0.4. Set B
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FIG. 1 (color online). jN vs N on double-logarithmic (a)
and linear-log plot (b). The parameters (K�; TL; TH) of the
model are, set B: (1, 0.2, 0.4), set E: (0.3, 0.3, 0.5), set F: (1, 5,
7), set H: (0, 0.3, 0.5), set J: (0.05, 0.1, 0.2). All of them have
Kr � 1, mass m � 1, lattice spacing a � 2. The straight lines
on F and E have slope 1=3, while the slope on H and J is 2=5.
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is consistent with logarithmic divergence, � / logN [see
Fig. 1(b)]. The model has two key parameters, the tem-
perature T, and the transverse coupling K�. We should
mention that a wide range of parameters is scanned, and
surprisingly, only the three scalings are found so far in
this model.

To understand the simulation results, we consider a
simple mode-coupling theory for the present model.
The equations of motion in terms of normal-mode coor-
dinates, Qk

k �
�����������
m=N

p P
N�1
j�0 �xj � ja�ei2�jk=N, Q?

k ������������
m=N

p P
N�1
j�0 yje

i2�jk=N, for small oscillation near zero-
temperature equilibrium position, keeping only leading
nonlinearity, are

d2Qk
k

dt2
� ��!k

k�
2Qk

k �
X

k0�k00�k

ckk0;k00Q
?
k0Q

?
k00 ; (3a)

d2Q?
k

dt2
� ��!?

k �
2Q?

k �
X

k0�k00�k

c?k0;k00Q
k
k0Q

?
k00 ; (3b)

where the bare dispersion relations are given by !k
k�2�������������

Kr=m
p

jsin��k=N�j, and !?
k � 4

������������������
K�=a2m

q
sin2��k=N�.

The expressions for ck;?k0k00 are complicated, but can be
simplified in the long-wave limit, as c?k;k0 � 2ckk;k0 /
kk0�k� k0�. Instead of the integer k, we can also in-
dex the mode by its corresponding lattice momentum
p � 2�k=�aN�.

A central quantity in the mode-coupling theory is the
normalized correlation function, gp�t� � hQp�t�Q�

p�0�i=
hjQp�0�j

2i. The Fourier-Laplace transform of the corre-
lation function, g�z� �

R
1
0 g�t�e�izt dt, is given by [11,14],

gk;?
p �z� �

�iz� p2!k;?�z�

z2 � c2
k;?p

2 � iz p2!k;?�z�
: (4)

The constants ck and c? are effective or renormalized
sound velocities for the longitudinal and transverse
modes. They are defined, e.g., by �ckp�

2hjQk
pj2i � kBT,

as p ! 0. The damping functions (memory kernel) are
given by the coupled equations,

!k�t� �
Kk

2�

Z �=a

���=a�
dp �g?

p �t��2; (5a)

!?�t� �
K?

2�

Z �=a

���=a�
dp gk

p�t� g?
p �t�: (5b)

Equations (4) and (5) form a closed system of nonlinear
integral equations. This is a straightforward generaliza-
tion of the strictly 1D result [6]. The above equations are
derived under a number of simplification assumptions,
such as long-wave approximation, mean-field type prod-
uct approximation for the correlation functions, replacing
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random-force correlation with true force correlation.
Some of them can be removed but more complicated
equations will result.

In Fourier space, for large z the solution is found from
integration by part, as !k;?�z� � Kk;?=�iza� �O�z�3�.
The long-wave asymptotic decay of each mode is con-
trolled by the small z behavior of the function !k;?�z�. We
define $k and $? by !k;?�z� / z�$k;? . The dispersion
relation is then given by the location of the poles in the
correlation function g�z�. The imaginary part of the
frequency gives damping, by %p / p2!�z�jz!cp / p2�$.
We note that three types of behaviors can be derived
from the above set of equations. If Kk � K? and ck �
c?, the two equations reduce to that of strictly 1D model;
we thus expect the result of Lepri [6], i.e., $k � $? �
1=3. On the other hand, it can be shown rigorously that in
the limit of small K? and small c?, we have $? � 0 and
$k � 1=2. Formally, when a ! 0, the equation possesses
the scaling solution of the form !�&z� � &�1!�z�; this
implies !�z� / 1=z. These analytic results are supported
by numerical solutions of the coupled equations, shown in
Fig. 2. They are solved by a brute force numerical inte-
gration in Fourier space. Details of the mode-coupling
calculation will be presented elsewhere.

In Fig. 2 at parameter set I, we observe very good
asymptotic behavior of !k�z� / z�1=2 and !?�z� / const.
This corresponds to the behavior of MD results for data
set E and F in Fig. 1. When ck � c? but Kk � K? (set II),
there appears to have a crossover from $k � 1=3 to 1=2.
The curve III may be related to the logarithmic diver-
gence. We note that a meaningful, direct mapping from
the simulation parameters to mode-coupling parameters
is not possible, due to the qualitative nature of the theory.

The prediction of $k � 1=2 and $? � 0 is checked
against an equilibrium MD simulation in a microcanoni-
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FIG. 2 (color online). Real part of !k�z� and !?�z� vs z for
parameters a � 1, Kk � 1, and (K?, ck, c?) I: (0.3, 2, 1),
II: (1.8, 1, 1), III: (2, 1, 0.5).
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cal ensemble with periodic boundary condition. We com-
pute the normal-mode correlation hQp�t�Q

�
p�0�i for each

mode specified by the lattice momentum p � 2�k=�aN�.
The functions are oscillatory with an exponential decay,
cos�!t�e�%pt. The decay constants are obtained by fitting
the maximum amplitude as a function of time. The results
are presented in Fig. 3. Comparing with results from
smaller and larger system sizes, the effect of finite sizes
appears rather small at N � 1024. Excellent agreement
with mode-coupling theory (% / k2�$) is obtained for
data set E. However, for data set B and J, the slopes are
not consistent with either logarithmic divergence for � or
2=5 law. This may be interpreted as that we are not in the
asymptotic regime.

To connect the result of damping of the modes with
thermal conductivity, it is noted [5,12] that each mode
contributes to the thermal transport independently. Under
the linear-response theory, the Green-Kubo formula re-
lates the current-current correlation to the thermal con-
ductivity by

� �
1

kBT2aN

Z 1

0
hJ�t�J�0�idt: (6)

The decay rates for J are assumed to be the same as that
for Q, thus hJ�t�J�0�i /

P
p exp��%k

pt�. The amplitude
of the exponential decay is approximately indepen-
dent of p. Converting the summation to integral, we
have hJ�t�J�0�i / t�1=�2�$k�. The thermal conductivity
on a finite lattice is obtained by integrating over t to a
time of O�N�, thus �N / N1�1=�2�$k� � N�. When $k �
1=2, we have � � 1=3, and when $k � 1=3, the exponent
� � 2=5.
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FIG. 3 (color online). The decay rate %k (dots) and %? (tri-
angles) vs k for the parameters set B, E, and J at equili-
brium temperature T � �TL � TH�=2. The number on the line
indicates the slope of the straight line. The system size is
N � 1024.
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FIG. 4 (color online). The Green-Kubo integrand,
hJ�t�J�0�i=N, vs time t. The parameters are the same as that
in Fig. 3. The straight lines have slope �2=3 (on E) and �3=5
(on J).
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The current-current correlation functions are pre-
sented in Fig. 4 for the parameters corresponding to
data sets B, E, and J in Fig. 1. For data set J, a power-
law dependence is in excellent agreement with the theo-
retical expectation t��1 with � � 2=5. For set E, the
curve is a bit steeper than expected. This may be due to
finite sizes. For set B, where logarithmic divergence is
observed, we do not observe good power-law behavior in
the correlation.

We need to clarify the relationship between the three
types of observed behaviors in the nonequilibrium MD
results. From a mode-coupling point of view, the 1=3 law
is generic and robust, while � � 2=5 should eventually
cross over to 1=3 at long length scales. However, such a
crossover is not observed in MD data. The crossover
effect can be argued for a more general setting. More
general mode-coupling equations for a generic interaction
potential consistent with the symmetry would have an
additional term of �K3=2��

R��=a�
���=a� dp�g

k
p�t��2 for Eq. (5a);

Eq. (5b) remains the same. Such a term can appear either
from cubic or quartic nonlinearity in potential.
Contribution from this extra term decays in time t faster
than the perpendicular component contribution. Thus, the
asymptotic result of $k � 1=2 remains true. The same
should be also true even if a chain is allowed to move in
three dimensions. If the parameter K3 is sufficiently
large, we may see exponent close to 0:4. The logarithmic
divergence is a bit difficult to interpret. It might be a
crossover effect to other asymptotic behavior.

In summary, we have observed three different scalings
in a 1D chain. When the transverse motion couples with
074302-4
the longitudinal motion, the thermal conductivity di-
verges with system size with a 1=3 power law. This has
been demonstrated with a very high precision numerical
result and explained in terms of a mode-coupling theory.
In the weak coupling regime, a 2=5 power law is observed
which is consistent with the results observed in the FPU
model without transverse motion. In relatively large cou-
pling regime, a logarithmic divergent law is observed.

We argue that the 1=3 law is generic for 1D many-
particle chain with momentum conservation and trans-
verse motion. This is supported by a recent study on 1D
FPU model with transverse motion [15]. If the on-site
potential is considered, as in the case of Frenkel-
Kontorova model [16], we expect a size-independent
thermal conductivity regardless of the transverse motion.
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