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Heat Conduction in a One-Dimensional Chain of Hard Disks with Substrate Potential
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Heat conduction in a one-dimensional chain of equivalent rigid particles in the field of the external
on-site potential is considered. The zero diameters of the particles correspond to the integrable case
with the divergent heat conduction coefficient. By means of a simple analytical model it is demonstrated
that for any nonzero particle size the integrability is violated and the heat conduction coefficient
converges. The result of the analytical computation is verified by means of numerical simulation in a
plausible diapason of parameters, and good agreement is observed.
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potential. Although it was supposed that the noninte- n
Heat conductivity in one-dimensional (1D) lattices is a
well-known classical problem related to the microscopic
foundation of Fourier’s law. The problem started from the
famous work of Fermi, Pasta, and Ulam (FPU) [1], where
an abnormal process of heat transfer was initially re-
vealed. Nonintegrability of a system is a necessary con-
dition for normal heat conductivity. As was recently
demonstrated for the FPU lattice [2–4], disordered har-
monic chain [5–7], diatomic 1D gas of colliding particles
[8–11], and the diatomic Toda lattice [12], nonintegrabil-
ity is not sufficient in order to get normal heat conduc-
tivity. It leads to the linear distribution of temperature
along the chain for a small gradient, but the value of the
heat flux is proportional to 1=N�, where N is the number
of particles of the chain, and the number exponent 0<
�< 1. Thus the coefficient of heat conductivity diverges
in the thermodynamic limit N ! 1. Analytical estima-
tions [4] have suggested that any chain possessing an
acoustic phonon branch should have infinite heat conduc-
tivity in the limit of low temperatures.

On the other hand, there are some systems with the on-
site potential that have normal heat conductivity [13–19].
These models are not invariant with respect to trans-
lation, and the momentum is not conserved. It was sup-
posed that the on-site potential is extremely significant
for normal heat conduction [18] and that the anhar-
monicity of the on-site potential is sufficient to ensure
the validity of Fourier’s law [20]. A recent detailed review
of the problem is presented in Ref. [21].

Probably the most interesting question related to heat
conductivity of 1D models (which inspired the first in-
vestigation of Fermi, Pasta, and Ulam [1]) is whether the
small perturbation of an integrable model will lead to the
convergent heat conduction coefficient. It seems that for
1D chains with conserved momentum the answer is nega-
tive [22]. Still, normal heat conduction has been observed
in some special systems with conserved momentum
[23–25], but it may be clearly demonstrated only well
apart from the integrable limit.

The situation is not so clear in the systems with on-site
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grable system without additional integrals of motion
would have convergent heat conductivity [22], no rigorous
proof was presented. A recent attempt of numerical simu-
lation of heat transfer in the Frenkel-Kontorova model
[26] demonstrated that, because of computational diffi-
culties, no unambiguous conclusion can be drawn as to
whether heat conduction is convergent for all finite values
of perturbation of the integrable limit system.

It seems that computational difficulties of investiga-
tion of heat conduction in a vicinity of the integrable
limit are not just a result of weak computers or ineffective
procedures. In the systems with conserved momentum
divergent heat conduction is fixed by a powerlike decrease
of heat flux autocorrelation function with power less than
unity. Still, for the systems with on-site potential, expo-
nential decrease is more typical [26]. For any fixed value
of the exponent the heat conduction converges; if the
exponent tends to zero with the value of the perturba-
tion of the integrable case, then for any finite value of
the perturbation the characteristic correlation time and
length will be finite but may become very large. Conse-
quently, they will exceed any available computation time
or size of the system, and still no conclusion concerning
the convergence of the heat conduction coefficient will be
possible.

A way to overcome this difficulty is to construct a
model, which will be, at least to some extent, analytically
tractable and will allow one to predict some characteristic
features of the heat transfer process and the behavior of
the heat conduction coefficient. Afterwards the numerical
simulation may be used to verify the assumptions made in
the analytic treatment. To the best of our knowledge, to
date no models besides pure harmonic chains were treated
in such a way. A description of such a model is the scope
of present Letter.

Let us consider the one-dimensional system of rigid
particles with equal masses subject to the periodic on-site
potential. The Hamiltonian of this system will read

H �
X�

1

2
M _xx2n � V�xn�1 � xn� �U�xn�

�
; (1)
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where M is the mass of the particle, xn is the coordinate of
the center of the nth particle, _xxn is the velocity of this
particle, and U�x� is the periodic on-site potential with
period a �U�x� 	 U�x� a�
. The interaction of absolutely
rigid particles is described by the following hard-core
potential: V�r� � 1 if r � d and V�r� � 0 if r > d,
where d is the diameter of the particle. This potential
corresponds to pure elastic impact with unit recovery
coefficient.

It is well-known that the elastic collision of two equal
particles in one dimension leads to the exchange of their
velocities. An external potential does not change this fact
since the collision takes zero time, and thus the effect of
the external force on the energy and momentum conser-
vation is absent.

The one-dimensional chain of equivalent hard particles
without the external potential is a paradigm of the inte-
grable nonlinear chain, since all interactions are reduced
to the exchange of velocities. It is therefore natural to
introduce quasiparticles associated with these individual
values of velocities. They are characterized by a pair of
parameters �Ek;nk�, where Ek � v2

k=2 is an energy of the
quasiparticle, and nk is a unit vector in a direction of its
motion. Every particle in every moment ‘‘carries’’ one
quasiparticle. The elastic collision between the particles
leads to a simple exchange of parameters of the associ-
ated quasiparticles; therefore the quasiparticles them-
selves should be considered as noninteracting.

The situation changes if the external on-site potential
is present. It is easy to introduce similar quasiparticles
(Ek will be a sum of kinetic and potential energies). The
unit vector n of each quasiparticle between subsequent
interactions may be either constant (motion in one direc-
tion) or periodically changing (vibration of the particle in
a potential well), depending on whether the energy of the
quasiparticle exceeds the potential barrier. In every col-
lision the particles exchange their velocity vectors but do
not change their positions. Two quasiparticles then inter-
act as follows:

E0
1 � E1 �U�xc � d=2� �U�xc � d=2�; n0

1 � n1;

E0
2 � E2 �U�xc � d=2� �U�xc � d=2�; n0

2 � n2:

The prime denotes the state after the collision; xc is a
point of contact between the particles. In the case of a
nonzero diameter the quasiparticles are associated with
the centers of the carrying particles.

If the diameter of the particles is zero, then the addi-
tives to the energies compensate each other and the en-
ergies of the quasiparticles are preserved in the collision.
Therefore the interaction between the quasiparticles ef-
fectively disappears and the chain of equal particles with
zero size subject to any on-site potential turns out to be a
completely integrable system. Thus, contrary to some
previous statements, it is possible to construct an example
of a strongly nonlinear one-dimensional chain without
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momentum conservation, which will have divergent heat
conductivity.

The situation differs if the size of the particles is not
zero, as the individual energies of the quasiparticles are
not preserved in the collisions. After l collisions the
energy of the quasiparticle will be

E�l� � E0 �
Xl
j�1

�Ej;

�Ej � U
�
xj �

d
2

�
�U

�
xj �

d
2

�
;

(2)

where jth collision takes place in point xj, and E0 is
the initial energy of the quasiparticle. Now we suppose
that the coordinates of subsequent contact points
f. . . ; xj�1; xj; xj�1; . . .g, taken by the modulus of the pe-
riod of the on-site potential, are not correlated. Such a
proposition is equivalent to fast phase mixing [27].

The average energy of the quasiparticle is equal to hE0i
over the ensemble of the quasiparticles, as obviously
h�Eji � 0. Still, the second momentum will be nonzero:

h�E�l� � E0

2i � l

��
U
�
x�

d
2

�
�U

�
x�

d
2

��
2
	
x
� lF�d�:

(3)

The right-hand side of this expression depends only
on the exact shape of the potential function F�d� �
1
a

R
a
0�U�x� d=2� �U�x� d=2�
2dx. This expression is

correct only at the limit of high temperatures; it neglects
the fact that the quasiparticle spends more time near the
top of the potential barrier due to lower velocity.

Let us consider the quasiparticle with initial energy
E0 > U0, where U0 is the height of the potential barrier.
Therefore vector n is constant. Equation (3) describes
random walks of the energy of the quasiparticle along
the energy scale axis. Therefore, after a certain number of
steps (collisions), the energy of the quasiparticle enters
the zone below the potential barrier E�l�<U0. In this
case the behavior of the quasiparticle changes, as the
constant vector n becomes oscillating, as described
above. After some additional collisions the energy again
exceeds U0, but the direction of motion of the quasipar-
ticle is arbitrary. It means that the only mechanism of
energy transfer in the system under consideration is asso-
ciated with the diffusion of the quasiparticles, which are
trapped by the on-site potential and afterwards released
in arbitrary direction.

The diffusion of the quasiparticles in the chain is
characterized by the mean free path, which may be
evaluated as

��
2ah�U0 � E0�

2i

ncF�d�
�

2a�2�kBT�
2 � 2U0kBT �U2

0


ncF�d�
;

(4)

where nc is a number of particles over one period of the
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FIG. 1. Correlation function of the system of particles with
d � 0:5 under temperatures T � 0:24, 0.45, and 0.75 (curves 1,
2, and 3).
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FIG. 2 (color online). Dependence of the coefficient of the
exponential decrease of the autocorrelation function � (curve 1)
and the coefficient of the heat conduction � (curve 2) on the
particle diameter d of 1D gas at T � 1. Curve 3 represents
theoretical predictions according to formula (6).
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on-site potential (concentration). Coefficient 2 appears
due to an equivalent probability of positive and negative
energy shifts in any collision, T is the temperature of the
system, and kB is the Boltzmann constant.

The average absolute velocity of the quasiparticle
may be estimated as hjvji � a

�����������������
�kBT=2

p
=�a� ncd�. Here

the divisor takes into account the nonzero value of d
and absolute rigidity of the particles. The dividend is
due to the standard Maxwell distribution function for
the 1D case.

The heat capacity of the system over one particle is
unity, as the number of the quasiparticles is constant.
Therefore the coefficient of heat conductivity may be
estimated [27] as

�� �hjvji �
2a2�2�kBT�2 � 2U0kBT �U2

0


nc�a� ncd�F�d�

������������
�kBT
2

r
:

(5)

It is already possible to conclude that, according to (5),
regardless of the concrete shape of the potential U�x� in
the limit d ! 0, we have F�d� ! 0 and therefore � ! 1,
although for every nonzero value d the heat conductivity
is finite. Therefore the small perturbation of the inte-
grable case d � 0 immediately brings about convergent
heat conductivity.

It is convenient to introduce the dimensionless vari-
ables for the following numerical simulation. Let us set
the mass of each particle M � 1, the on-site potential
period a � 2, its height U0 � 1, and the Boltzmann
constant kB � 1 in all above relationships. We suppose
that the chain contains one particle per each period of
the potential, i.e., that nc � 1, and the particle diameter
0< d< 2.

Let us consider the periodic piecewise linear on-site
potential: U�x� � x, if 0 � x � 1; U�x� � 2� x, if 1 �
x � 2 [U�x� 2� 	 U�x�]. Then it follows from (5) that
the nondimensional heat conduction coefficient is ex-
pressed as

� � �2T2 � 2T � 1�
������������
�T=2

p
=�2� d�F�d�; (6)

where function F�d� � d2 � 2d3=3, for 0< d � 1, and
F�d� � �4=3� 4d� 3d2 � 2d3=3, for 1 � d < 2.

The numerical scheme for solving the equations of
motion describing the dynamics of the 1D hard-
point gas has been developed in a series of papers
[8,28,29] based on the exact analytical solution of the
equations of motion between collisions and reconsider-
ing the initial conditions after each collision. In order to
increase the simulation time, the numerical scheme of
paper [9] is used. To find the heat flux autocorrela-
tion function C�t� numerically, we calculated the time
mean hJ���J��� t�i�=NT2, where J�t� is the total heat
flow through the gas/chain system consisting of N � 500
particles and T is the temperature of the system, averaged
over 104 realizations of initial thermalization.
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The numerical simulation of the dynamics demon-
strates an exponential decrease of the autocorrela-
tion C�t� � exp���t� for all values of the diameter 0<
d< 2 and temperature T > 0, where the simulation time
is plausible from a technical viewpoint. For low tempera-
tures the exponential decrease is accompanied by oscil-
lations with the period corresponding to the frequency
of the vibrations near the potential minima (Fig. 1). The
reason is that if the temperatures are low the concen-
tration of transient particles decreases exponentially and
the majority of the particles vibrates near the potential
minima. It means that the 1D gas on the on-site potential
has finite heat conductivity.

The dependence of � and � on particle diameter d is
presented in Fig. 2. The maximum of � and the minimum
of � are attained at d � 1:4. As the temperature grows, �
decreases and heat conduction � increases.

A theoretical analysis of the heat conductivity pre-
sented above allows one only an approximate (although
rather reliable; see Fig. 2) prediction of the numerical
value of the heat conduction coefficient �. Still, the other
074301-3
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FIG. 3. Dependence of the heat conduction coefficient on the
temperature. The markers correspond to numerical results ( ln�
versus lnT); the straight line is ln� � 2:5 lnT � 3:45, corre-
sponding to estimations �� T5=2 (diameter d � 0:5).
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question of interest is the asymptotic dependence of the
heat conduction on the parameters of the model.
Formula (6) leads to the following estimation for the
temperature dependence of the heat conduction coeffi-
cient: �� T5=2, for T ! 1. Figure 3 demonstrates that
this analytical estimation perfectly corresponds to the
numerical simulation data.

We have considered the heat conduction process in the
1D lattice of hard particles with the periodic on-site
potential. An analytical treatment predicts that for zero
diameter of the particles the system will be completely
integrable regardless of the exact shape of the on-site
potential. Therefore the heat conductivity will be infinite.
For any nonzero size of the particles the heat transfer is
governed by the diffusion of quasiparticles, giving rise to
finite heat conductivity. The value of the heat conduction
coefficient computed by the analytical treatment is in line
with numerical simulation data. This coincidence is very
profound if speaking about the asymptotic scaling behav-
ior of the heat conduction coefficient in the case of high
temperatures.

It should be stressed again that the behavior of the heat
conduction coefficient described above cannot be re-
vealed only by numerical simulation, unlike the systems
with conserved momentum. The reason is that the corre-
lation length (as well as the heat conduction coefficient)
diverges as the system approaches the integrable limit;
therefore any finite capacity of the numerical installation
will be exceeded. This is why the analytical approach is
also necessary.
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