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Thermo-Optical “Canard Orbits’’ and Excitable Limit Cycles
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We demonstrate experimentally and theoretically the existence of canard orbits and excitable
quasiharmonic limit cycles in the thermo-optical dynamics of semiconductor optical amplifiers. We
also observe the phase locking of the noise-induced spikes to the small-amplitude Hopf quasiharmonic
oscillations, recently predicted by Makarov, Nekorkin, and Velarde [Phys. Rev. Lett. 86, 3431 (2001)].
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Excitability and self-sustained relaxation oscillations
are ubiquitous dynamical behaviors found in a wide range
of systems including neural or cardiac cells and tissues,
autocatalytic chemical reactions, electronic circuits, la-
sers and other optical systems, among many others [1,2].
Commonly, systems that exhibit excitable behavior in a
range of parameters also have a regime of relaxation
oscillations in another. Both regimes have been individu-
ally investigated in great extent under the most diverse
experimental and theoretical conditions [3]. The transi-
tion from one type of behavior to the other lies within the
known scenarios of the theory of bifurcations (Andronov
saddle-node collisions, subcritical and supercritical Hopf
bifurcations, etc.); however, the transitional regime ex-
hibits special features associated with the almost singular
character of the excitable dynamics, whose physical im-
plications have only recently been investigated [4].

One of the most popular models to describe excitability
and relaxation oscillations is the Van der Pol-FitzHugh-
Nagumo (VdPFN) equation [5]

x=y+x—x/3 (1a)

y=—¢elx—a) (1b)
that describes a dynamical evolution with two very differ-
ent characteristic time scales whose ratio is the small
parameter &. This model possesses a single steady state
X =a;y = a’/3 — a, which is stable for |a| > 1. In this
regime the system displays excitable behavior for |a| close
to 1. A supercritical Hopf bifurcation occurs at the criti-
cal value |a,| = 1 such that a quasiharmonic limit cycle
develops with amplitude proportional to ./a = a,.
However, the large split between time scales associated
to the smallness of & makes the quasiharmonic limit
cycle observable only within a parameter range of order
¢ around the bifurcation point a.. Outside this range the
amplitude of the limit cycle abruptly (though continu-
ously) jumps and reaches a saturation value, the so-called
relaxation-oscillation regime. Likewise, the frequency of
the oscillations experiences a similar sudden change from
the quasiharmonic value — given by the imaginary part
of the linear eigenvalues of the fixed point which is equal
to £'/2 —to the relaxation-oscillation frequency propor-
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tional to €. In the mathematical literature these sudden
changes are known as “‘canard” explosions [6].

In the quasiharmonic regime, i.e., just above the Hopf
bifurcation point, the system is still excitable: time-
localized perturbations above a certain threshold induce
large excursions in phase space, which are relatively in-
sensitive to the details of the perturbation, before return-
ing to the small globally attracting limit cycle. These
excursions appear now as large pulses on a small-
amplitude sinusoidal baseline. If the perturbations are
in the form of sustained random noise, a succession of
noise-triggered excitable pulses appears. Below the bifur-
cation point, these pulse trains have maximal regularity
for an optimal nonzero value of the noise amplitude, a
phenomenon known as coherence resonance [7,8].
Recently [1] it was beautifully demonstrated theoretically
that just above the bifurcation these noise-induced excit-
able pulses appear synchronized to the quasiharmonic
oscillation. This behavior, in turn, is reminiscent of the
so-called stochastic resonance [9], where the pulses lock
to an external periodic signal applied to the system.
However, while sharing some features of both, the present
effect should be considered as a third way between coher-
ence and stochastic resonance, not the first because the
interspike intervals are strongly correlated with the fixed
quasiharmonic period, nor the second because there is no
external forcing on the system. On the other hand, since
the direct observation of canard phenomena is quite dif-
ficult due to the tiny range of parameters where they are
bound to take place, this peculiar behavior under the
action of noise — an unavoidable ingredient in real sys-
tems — constitutes a very useful experimental indicator
for the presence of such regimes.

In this Letter we report what to our knowledge is the
first experimental evidence of canard oscillations in an
optical system. The system is a semiconductor optical
amplifier (SOA) that may exhibit excitable and self-
sustained thermo-optical pulsing regimes as either the
injected power or the pumping current is increased. It
has recently been shown that these regimes appear in
an order compatible with the scenario of the VAPFN
equations [10]. The experimental detection of the
canard transition is then an amazing confirmation of the
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correctness of such a dynamical scenario. We also show
that a feasible physical model of the device contains all
the observed behaviors (including canards) and can in-
deed provide the connection between the qualitative
VAPFEN description and the real physical variables.

In order to investigate the possible existence of the
canard phenomenon, we first perform a careful experi-
mental characterization of the transition from the excit-
able to the self-oscillatory regimes. To this effect, we use
the same experimental setup described in [10], but here
the SOA is a top-emitting vertical cavity surface emitting
laser (VCSEL) biased below its threshold that operates in
reflection mode. The VCSEL is an oxide-confined device,
with an oxide window of 50 pwm diameter and an optical
cavity defined by two Bragg mirrors made of 17 n-type
and 30 p-type pairs, respectively. The optical input (di-
ameter ~20 pm) is provided by a tunable external-cavity
laser and enters the SOA cavity along the optical axis. The
SOA output is monitored by an avalanche photodiode
(1.6 GHZ bandwidth) connected to a digital oscilloscope
(500 MHz bandwidth) (see [10] for details).

Figure 1 shows four traces of the output intensity as the
pumping current is delicately increased within a properly
chosen range. Trace (a) at the lowest value of this range
corresponds to a steady state output in what we have
previously called the excitable regime. Trace (d) at the
other extreme of the range shows the so-called relaxation-
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FIG. 1. Transition from excitable regime to self-oscillations
in the amplifier output intensity as the pumping current is
increased: (a) 179.9 mA, (b) 180.0 mA, (c) 180.1 mA, and
(d) 180.2 mA. The vertical scale is 5 mV/div. An offset is
artificially added to the series for the benefit of the display.
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oscillation regime. At transitional values of the pumping
[trace (b)], the output starts performing very small-
amplitude quasiharmonic oscillations due to a super-
critical Hopf bifurcation. As expected from the VAPFN
model, the quasiharmonic frequency is clearly higher
than that of the relaxation-oscillation regime [see
trace (d)]. However, for intermediate values of the current
[trace (c)], the quasiharmonic output is sporadically in-
terrupted by pulses quite similar in shape to those in the
relaxation-oscillations regime. These pulses are, in fact,
excitable responses randomly elicited by the small rema-
nent noise unavoidable in the experiment. Further in-
creasing the current above the value corresponding to
trace (d) leads to a stable operation on the high power
state through the reverse sequence but now with down-
ward pulsing to the low-level output.

In the context of the VAPFN model, the statistical
properties of noise-triggered excitable pulses have been
studied mainly for the excitable regime just below the
Hopf bifurcation in which the excitable state is the only
fixed point of the system. In this case, the spikes are
separated by an interval T, = T, + T,, where T, is the
refractory time and 7, is the stochastic activation time
which is continuously and unimodally distributed accord-
ing to Kramers’s law [11,12].

However, slightly above Hopf bifurcation where the
excitable state is instead a quasiharmonic limit cycle,
the statistical properties of the output change drastically.
The distribution of interspikes times becomes multi-
modal because the probability of emitting a pulse is
maximal at a specific phase of the quasiharmonic os-
cillation. This is revealed in Fig. 2 by the inter-spike-
interval histogram exhibiting peaks centered at 7, =
T,+nt (n=0,1,2,...), being 7 with the quasihar-
monic period. In words, the train of noise-triggered ex-
citable pulses is stochastically synchronized to the
small-amplitude limit cycle [1]. This behavior could be
considered similar to the stochastic resonance observed
when an excitable system is driven by both an external
periodic signal and noise [13,14]. In our case, however,
there is no external modulation: it is the small cycle,
intrinsic to the autonomous dynamics, that is responsible
for the features described above. In addition, since the
period of the quasiharmonic cycle is shorter than the
refractory time, the first peak of the histogram does not
correspond to the quasiharmonic oscillation period but to
the refractory time instead. Finally, by increasing the
noise level [Fig. 2(b)] the firing efficiency of the noise
increases and the amplitude of the first peak of the
histogram increases relatively to the others.

In Fig. 3 we have plotted a phase-space projection
reconstructed from a low-pass filtered experimental
time series by means of a minimal application of the
Ruelle-Takens embedding technique using only one
time delay. This reconstruction shows all the essential
features that one expects in the noisy version of the
canards regime as it has been reported in a previous
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FIG. 2. Time traces and corresponding interpulse time histo-
gram in the quasiharmonic regime, in the presence of external
noise (50 MHz bandwidth) generated by an Agilent 33250A
arbitrary waveform generator. The noise is added to the pump-
ing current by means of a bias tee, and the rms. noise levels are
0.25 mA (upper trace) and 0.5 mA (lower trace).

theoretical analysis of FitzHugh-Nagumo-like models
[1]. This fact corroborates the suitability of the VAPFN
scenario for the description of the thermo-optical dynam-
ics of SOAs that was proposed in [10].

The physics of thermal effects has been theoreti-
cally investigated in a number of optical systems such
as parametric oscillators [15] and semiconductor etalons
[16,17]. In these cases, the coupling of temperature to the
faster optical and material variables often leads to a self-
oscillatory behavior instead of the expected optical bi-
stability due to the interaction of the carrier density with
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FIG. 3. [Experimental reconstruction of the phase space

through one time-delay Ruelle-Takens embedding technique:
The time delay is 0.6 ws.
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the optical field [18]. This breakdown of bistability is due
to the fact that the same interaction makes the tempera-
ture vary, thus inducing a refractive index change that
shifts the cavity resonance thereby modifying the intra-
cavity field. A physical model for our particular system
can be constructed from the standard traveling-wave
description of a SOA,

a,Et i vain - Fa(N - Nt)(l - ia)Et, (2)

v
2
a[N = J - ’ySpN - Ua(N - Nt)(|E+|2 + |E+|2): (3)

where E. are the slowly varying amplitudes of the for-
ward and backward fields around the optical carrier fre-
quency (), v is the group velocity, I' is the optical
confinement factor, a is the differential material gain, N
is the carrier density, N, is the transparency carrier den-
sity, a is the linewidth enhancement factor, J is the
number of carriers per unit time and unit volume injected
into the active region, and y,, is the nonstimulated car-
rier recombination rate. The boundary conditions for
the above equations read E,(0,71)=rE_(0,¢) +
tE,E_(L, 1) = rye?®/<LE (L, 1), where n is the effec-
tive index in the SOA waveguide, L is the length of the
SOA, ry,(t;,) are the amplitude reflection (transmission)
coefficients of the front and rear facets as seen from the
inside of the SOA, while the prime denotes the same
quantities as seen from the outside, and E; is the injected
field. The reflected and transmitted fields are thus given
by E,=r\E;+HE_(0,1),E, = t,e ™ LE (L 1). We
consider that the effective index n depends linearly on
temperature 7', which evolves according to

0,T = —yu(T — Ty — RyH), 4

where 7y, is the relaxation rate of T towards its equilib-
rium value, T, is the substrate temperature fixed by the
Peltier element, Ry is the thermal impedance of the
device, and H is the power dissipated in the device.
From an energy balance [19] it is found that H = VI +
A(E;|* = |E,|* = |E,|*) — Byg,N, where V is the voltage
applied to the SOA, I is the total current injected into the
SOA, and A (B) is the power extracted by a photon
emitted by stimulated (spontaneous) emission.
Assuming that the fields follow adiabatically the evolu-
tion of the (much slower) other variables and upon suit-
able rescaling [20], the model can be recast in the form

G = v4,(Gy — G — P,0), (5a)
é = —vu(d — ¢, + AG + uP;Q), (5b)

(1 = R)(1 + Rye%)(eC — 1)
1 + R Rye*® — 2\/R R,¢C cos(¢p — aG)’

Q= (5¢)
where G is the single-pass gain in the amplifier, G is the
unsaturated single-pass gain arising from current injec-
tion, P; is the optical input power, ¢ is the normalized
detuning between the input field and the cavity resonance,
¢, is its equilibrium value without optical emission, AG
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FIG. 4. Time series of ¢ and G and the corresponding phase-
space trajectory, obtained by numerical integration of Egs. (5)
in the presence of additive Gaussian white noise. The parame-
ters values are Gy = 0.357, ¢, = 0.8899, P, = 0.005, u = 2,
R; =049, R, =0.999, A=0.005, =3, and yg,/ym =
0.015. The noise intensity is D = 1073,

is the correction to ¢ due to spontaneous emission, and
M P;Q is that due to stimulated emission. Current noise is
included as a white, random Gaussian variation of G,.

Equations (5) are equivalent to the spatially homoge-
neous case in [16] by considering a negative absorption
(i.e., gain) and adding the pumping term G,. The differ-
ence is that in our case we do not consider any thermal
dependence of the parameters, but only the variations in
cavity detuning due to the optothermal coupling. In Fig. 4
we plot the phase portrait of the system (dotted line)
together with the nullclines of Eqgs. (5) (solid lines) for
parameters in the canard region. The nullcline corre-
sponding to G = O(dashed line) is a Z-shaped manifold
arising from the Airy function in Q, while that corre-
sponding to ¢ = 0 (dot-dashed line) has the shape of a
“i”” whose upper branch is an almost straight line. The
structure of the nullclines is therefore analogous to that in
the generic VAPFN model, which supports the hypothesis
made in [10] of an underlying VAPFN scenario for the
thermo-optical pulsations observed in SOAs. Moreover,
the trajectories in phase space clearly display the canard
structure, corresponding in this case to the emission of
noise-triggered excitable pulses which are stochastically
synchronized to a small-amplitude quasiharmonic limit
cycle, as can be seen in the time traces for G and ¢ shown
in the lower panel of Fig. 4.

In summary, we have experimentally demonstrated the
existence of canard orbits and excitable quasiharmonic
limit cycles in the thermo-optical dynamics of semicon-
ductor optical amplifier. We have also observed the sto-
chastic synchronization of the noise-induced spikes with
the small-amplitude Hopf quasiharmonic oscillations
leading to a multipeaked interspike intervals distribution
with peaks separated by the period of the quasiharmonic
oscillation. This canard phenomenon can have interesting
applications in signal processing (e.g., optical clock re-
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generation or detection of low-level signals) since it was
shown [4] that the addition of a signal at the quasihar-
monic frequency may amplify stochastic resonance in
these systems. Moreover, this phenomenon provides a
way for regularizing the spiking of the system in a noisy
environment without requiring an external forcing of the
system [1]. We have finally shown that a physical model
for the system possesses a phase-space structure equiva-
lent to that in the simpler VdAPFN model.
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