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We consider the entanglement properties of the quantum phase transition in the single-mode
superradiance model, involving the interaction of a boson mode and an ensemble of atoms. For an
infinite size system, the atom-field entanglement diverges logarithmically with the correlation length
exponent. Using a continuous variable representation, we compare this to the divergence of the entropy
in conformal field theories and derive an exact expression for the scaled concurrence and the cusplike

nonanalyticity of the momentum squeezing.
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Entanglement has shot to prominence in recent years
on the back of the success of three key areas: quantum
computing, quantum cryptography, and quantum telepor-
tation. In this quantum information paradigm, entangle-
ment is a resource which can be exploited to perform
hitherto unimagined physical tasks.

Latterly, a new emphasis has emerged in which entan-
glement is related to properties of interacting many-body
systems. This approach is being pursued most vigorously
in connection with quantum phase transitions (QPTs) [1],
as it is hoped that entanglement may shed light upon the
dramatic effects occurring in critical systems which, by
their very nature, involve complex collective quantum
mechanical behavior. A complete theory of many-body
entanglement is still lacking. Current techniques are re-
liant upon bipartite decompositions of the total system,
and the criteria for selecting the most pertinent decom-
position are by no means clear.

Investigations so far have therefore been restricted to
interacting spin-1/2 systems on a one-dimensional lattice
[2-5] or on a simplex [6], which require the (more or less
artificial) splitting into two spin subsystems.

In this Letter, we study the entanglement properties
of the one-mode superradiance (Dicke) model [7],
where collective and coherent behavior of pseudospins
(atoms) is induced by coupling (with interaction con-
stant A) to a physically distinct single-boson subsystem.
We present here exact solutions for the entanglement
between these two subsystems, and for the pairwise en-
tanglement between atoms at and away from the critical
point A.. Recently the QPT in this model has been re-
lated to the emergence of chaos for A > A, in a cor-
responding classical Hamiltonian [8]. Our real-space
representation of the modes allows us to analyze the
scaling of the atom-field entanglement at the criti-
cal point and to compare with results from conformal
field theories for one-dimensional spin chains [4].
Furthermore, we derive explicit expressions for the con-
currence and the related (momentum) squeezing for all
coupling parameters A.
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A model that has drawn considerable interest in the
context of entanglement near criticality is the XY model.
In ferromagnetic spin-1/2 chains, the concurrence as a
function of system size been used [2] to demonstrate
scaling of entanglement near the transition point.
Osterloh et al. [2] have shown that the derivatives of the
concurrence between neighbor and next-nearest neighbor
spins exhibits a universal scaling behavior in the region of
the critical point in this model. Furthermore, the study of
such systems has led Osborne and Nielsen [3] to the
notion of a “critically entangled” system where the cor-
relation length ¢ of the system is divergent and entangle-
ment exists over all length scales. Vidal er al. [4] have
used an alternative approach and studied the entangle-
ment between blocks of L contiguous spins and the rest of
the chain and have found a striking relation to the entropy
S; = (¢ + ¢)/6log,L + const in 1+ 1 conformal field
theories with central charges ¢ and c.

We start by describing our model, which is the single-
mode Dicke Hamiltonian describing the interaction of N
two-level atoms of splitting w, with a single bosonic
mode of frequency w,

N N
H=w E s9 + wata + E Z_(at + a)(sV + 5D
Oi:I ) SN '

A
= wyl, + wata + ﬁ(a* +a)J; +J), (1)

where the second form follows from the introduction of
collective spin operators of length j = N/2. In the ther-
modynamic limit, N, j — oo, the system undergoes a QPT
at a critical coupling of A = A, = \/ww,/2, at which
point the system changes from a largely unexcited normal
phase to a superradiant one in which both the field and
atomic collection acquire macroscopic occupations.
Similar to the large-spin problem analyzed in this
context [6], the Dicke Hamiltonian can be regarded as a
zero-dimensional field theory with mean-field-type be-
havior, where the Sy permutation symmetry of the atoms
and the absence of an intrinsic length scale makes the
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model exactly solvable. Despite this simplicity, our model
exhibits many nontrivial properties; in particular, exact
solutions for the nonanalyticities of the entanglement and
the concurrence can be related to the scaling exponent,
the finite-size behavior, and the underlying semiclassical
integrable/chaos crossover which has been shown to oc-
cur around the phase transition [8].

The starting point for our analysis in the thermody-
namic limit is the Holstein-Primakoff representation [9]
of the angular momentum operators J, = (b1h — j),
J, = bT\/Zj —-btp, 7 = J:rr. Here, b and bt are bosonic
operators that convert H into a two-mode bosonic
problem. This allows us to obtain effective Hamilton-
ians that are exact in the thermodynamic limit, by
neglecting terms from expansions of the Holstein-
Primakoff square roots [8]. In the normal phase, A <
A., we expand the square roots directly and obtain the
effective Hamiltonian

H D = wObTb + wata + )\(aT + a)(bJr +b) — Jjwo.
2

In the superradiant phase, we first displace both boson
modes by quantities proportional to /j before we approxi-
mate the square roots. This leads to a second effective
Hamiltonian, the form of which is also bilinear and
similar to Eq. (2).

We now consider the normal phase ground state in
some detail; the superradiant phase results following
with slight modification. The eigenstates of FH ! are
two-mode squeezed states. Via the introduction of a
position-momentum representation for the two oscil-
lators, x = (1/2w)(a’ +a), y= (/2w (bt + b),
with the momenta defined canonically, we may write
the ground-state wave function as

Wiy, y) = (8; o )1/ fem e e Drtel (3

where 2 = 1 (0? + 0 = \/(w(z) — w?)? + 16A%ww,) are
the excitation energies of the system, s = sinvy, ¢ = cosy,
and the angle 2y = arctan[4A,/@®,/(w§ — w?)] charac-
terizes the squeezing axis. This wave function forms the
basis of the current analysis.

Atom-field entanglement.— As a measure of the entan-
glement between the atoms and the field, we calculate the
von Neumann entropy S = —trplog,p of the reduced
density matrix (RDM) p of the field mode. In the nor-
mal phase, p is simply determined by the ground-state
wave function, Eq. (3), whereas in the superradiant phase
two degenerate ground states exist that have wave func-
tions W. similar to Eq. (3), but are displaced from the
origin by amounts proportional to *./j. This degener-
acy arises from the breaking of the parity symmetry
Il = exp{imlata + J, + j]} for A > A.. Because V¥,
and W_ are orthogonal, elementary properties of the
von Neumann entropy [10] imply that in the superradiant
(SR) phase S(p.y) = S(p+) + 1, where p.. is the RDM of
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either of the two (macroscopically separated for large N)
solutions, and p, is the RDM of the superposition “cat”
state of the two. The cat state restores the broken parity,
and thus the latter expression is used for comparison with
the numerical results for finite N.

Having clarified this additional distinction between the
two phases, we now explicitly calculate the normal phase
RDM in the x representation,

pls) = o [* OV ). @

Here, c¢; is a normalization constant, and the introduction
of the cutoff function f; (y) = e~>"/L* allows us to discuss
the effect of a partial trace over the atomic (y) modes (see
below). A straightforward calculation shows that p; is
identical to the density matrix of a single harmonic
oscillator with frequency (); in a canonical ensemble at
temperature T = 1/8, where

e_e, +4(e_c?+ e,5%)/L?
(e — £,)*c%s?

The entropy S; obtained from p; is thus given by the
expression

S;(&) = [£ coth — In(2 sinh{)]/ In2,

coshBQ; =1+2 5)

{=BQL/2
(6)

This strikingly simple result allows some interesting ob-
servations. First of all, the entropy S, (cutoff L = c0)
undergoes a divergence at the critical point as we ap-
proach A, from either side. In the region near A., the
excitation energy e_ vanishes as _ « |A — A.|*”, with
the exponent » = 1/4 describing the divergence of
the characteristic length &= e21/2. Using S.({) =
[1 —In(20) + £%/6]/In2 + O(¢*) and ¢ = \/e,/2 X
[1 + O(ey)] with &4 = 2e_/(e,5%c?), we find that S
diverges logarithmically as S, « —(1/2)log,(2¢,,) and
hence (omitting constants),

Seo & —vlogy|A — A, = log, &, v=1/4 (1)

Thus, the entanglement between the atoms and field
diverges with the same critical exponent as the char-
acteristic length—a clear demonstration of critical
entanglement.

As we approach A the parameter { = hiQ),/kgT of the
fictitious thermal oscillator approaches zero, indicating
that a classical limit of the field RDM is being ap-
proached, interpreted either as the temperature 7' going
to infinity, or the frequency (), approaching zero. In
terms of the original parameters of the system, the de-
pendence of the entropy is through the ratio of energies
€0 * €_/e,[11]. Note that the classical counterpart of
the Dicke Hamiltonian has a classical (cusp) singularity
in the catastrophe theory sense [12].

We next compare the analytical result from Egs. (5)
and (6) for the entropy S (corresponding to completely
tracing out the atomic mode) with the corresponding

073602-2



VOLUME 92, NUMBER 7

PHYSICAL REVIEW LETTERS

week ending
20 FEBRUARY 2004

finite N results obtained from numerical diagonal-
ization. Figure 1 shows these results and illustrates the
finite-size scaling. Defining AM as the position of the
entropy maximum and Sy; as the value of the maxi-
mum entropy, we observe AM — A, o N7O3E01" apd
Sum  (0.14 = 0.01)log, N.

The accuracy of the exponents are limited by the
available numerical data. The divergence of the entropy
is logarithmic due to the symmetric nature of the spin
system. The entropy here saturates at a maximum value of
log,(N + 1), in contrast with general spin sytems which
saturate at log,(2") due to their larger Hilbert spaces. This
distinction is expected to be important in determining the
complexity of classically simulating a quantum phase
transition [5,13,14]. An explicit plot of the entropy scal-
ing is shown as an inset in Fig. 1, while the scaling of
the position of the maximum point is shown as an inset
in Fig. 2.

We next consider the system at the critical point but
keep the “tracing parameter” L finite. This corresponds
to a situation where the trace over the (atomic)
y coordinate is performed over only a finite Gaussian
effective region of size L for the atomic wave function.
With e _ = 0, the relevant dimensionless energy scale is
now g, = 2/(L*e, c?), and the entanglement entropy di-
verges as (again omitting constants)

S o« —(1/2)log,(2e,) = log, L, L—oco. (8
This result can now be compared with a recent calcula-
tion by Vidal et al [4] of the critical entanglement of
blocks of L spins in one-dimensional interacting XY and
XXZ spin-chain models. There, the prefactor for the logL
dependence of §; at criticality is given by the central
charges of the underlying conformal field theory in 1 + 1
dimensions. Note, however, that a direct comparison
would require the tracing out of L atoms from the
N-atom Hamiltonian (see below) with N — oo, L fixed,
but the general principle is the same. In this context, the
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FIG. 1 (color online). Entanglement S, between atoms and
field for both N — oo and finite N. Inset: scaling of the value of
the entanglement maximum as a function of log,N. The
Hamiltonian is on scaled resonance w = wy = 1.
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Dicke model corresponds to a zero-dimensional field
theory and, for N — oo, is in fact closely related to
Srednicki’s simple two-oscillator model in his introduc-
tory discussion of entropy and area [11].

Pairwise entanglement and concurrence.— To investi-
gate the entanglement within the atomic ensemble, we
proceed to consider the “pairwise” entanglement be-
tween two atoms. Since these two atoms will be in a
mixed state we calculate the concurrence [15]. The ab-
sence of an intrinsic length scale in our model simplifies
our calculations, enabling us to employ the prescription
set out for symmetric Dicke states in [16], in which the
reduced density matrix p, of any two atoms is expressed
in terms of the expectation values of the collective op-
erators, (J,), (J2), and (J%). We then define the scaled
concurrence as Cy = NC, with C = max{0, A; — A, —
A3 — A4}, where the A; are the square roots of the ei-
genvalues (in descending order) of pj (o, ® 073y) X
p1,(01, ® 0). Wang and Sanders have shown that Cy
can be expressed in terms of the Kitagawa-Ueda spin
squeezing [17] for symmetric multispin states [18].

We show numerical results for the scaled concurrence
Cy in Fig. 2, together with the analytic thermodynamic
limit result described below. For all A and N, Cy is less
than that of the pure W state |j, =(j — 1)), which has
Cy = 2, the maximum pairwise concurrence of any
Dicke state [16]. For small coupling A, we recognize an
N-independent behavior of Cy which may be obtained
from perturbation theory in A as

Cy(A—0) ~2a2/(1 + a?), a= 2w+ wy). 9)

As with the entropy, we can perform a finite scaling
analysis of the numerical data. Again, two power law
expressions are found for AM and CY; AM — ), «
N7068=01 and CM(A,) — Cy o« N~025=001 " Plots of this
behavior are shown as an inset in Fig. 2.

0.3

025 |

02 r

Cy 0.15
0.1

0.05 |

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

FIG. 2 (color online). Scaled pairwise concurrence Cy = NC
between two spins for both N — oo and finite N. Inset: scal-
ing of the value (+) and position (X) of the concurrence
maximum, and the position of the entropy maximum () as
functions of N. The Hamiltonian is on scaled resonance
0= w,=1.
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In the thermodynamic limit N — oo, the scaled con-
currence can be expressed as

Coo = (1 + w(@)?) —(dTd)] + 31 — ), (10)

setting w = 1 and dt = b* in the normal phase (A < A,),
and u = (A./A)? and dt = bt + \/N(1 — u)/2 in the SR
phase (A > A,). Recalling bt = \Jw,/2(y — ip,/wg), we
can further transform Egq. (9) to establish a relation
between the scaled concurrence and the momentum
squeezing (Ap,)? = (p?) — (p,)*. We have

Co = (L+ wly = (Ap)) /@l +5(1 = p), (D)

where again, setting u = (A./A)? gives the superradiant
phase equivalent. By using the density matrix of a har-
monic oscillator at temperature 7, we can calculate an
explicit expression for the expectation values in Eq. (10),
giving Co, = 1 — (uQ)/wg) coth(BQ/2). The compari-
son between the thermal oscillator and the y (atom)
density matrix gives coshBQ) =1+2¢_e,/D, D=
[es(e_ —e,)]?, and 2Q/sinhBQ = D/(s_c* + &.5%).
Because of symmetry, these are the same parameters as
for the reduced field (x) density matrix p, Eq. (4), with
s = siny and ¢ = cosy interchanged. Using cothx/2 =
(coshx + 1)/ sinhx and s* + ¢* = 1 — 2¢?s?, after simple
algebra one obtains C, =1— u(e_s*> + e,.¢c?)/w,.
Because of space restrictions, we give only analytical
results at resonance (0w = wy),

CE' =1-V1+x+V1-14]

ﬁlxz [(sinzy)\/l TN
+ (coszy)\/l +xt 41— xh)? + 4},

13)

x= M, (12)

Cgo21=1_

where 2y = arctan[2/(x?> — 1)] in the SR phase. These
explicit expressions reveal the square-root nonanalyticity
of the scaled concurrence near the critical point A.. The
concurrence assumes its maximum Co = 1 — +/2/2 =
0.293 at the critical point A = A.. We note that Eq. (12)
is consistent with the maximum of the (unscaled) con-
currence approaching the critical point in a related, dis-
sipative version of the Dicke model in the normal phase
[19]. Our findings are also in agreement with the behavior
of the concurrence in the collective spin model, H =
—(Q2A/N)(S% + yS2) — 25, + (A/2)(1 + ) [6], and differ
from 1D spin chains, where the maximum of the C does
not coincide with its nonanalyticity at the critical point.
We also note here that the squeezing obtains its minimal
value at A., which is again in agreement with the above
spin model.

In conclusion, we have obtained exact results for the
entropy and the concurrence in a model that allows us to
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quantify entanglement across a quantum phase transition.
The clear physical distinction between the subsystems
(pseudospin or two-level system and bosonic mode) en-
ables us to see distinctly the logarithmic divergence of the
entropy in the thermodynamic limit as a function of the
coupling constant. We mention that quantum phase tran-
sitions have also been discussed very recently in the
context of entanglement generation (e.g., for atoms in
optical lattices [20]), and quantum computation schemes
[14]. The role of phase transitions in the connection
between entanglement and underlying integrable to quan-
tum chaotic transitions remains largely unexplored.
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