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Modulational and Filamentational Instabilities of Intense Photon Pulses
and Their Dynamics in a Photon Gas
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It is shown that an intense photon pulse interacting nonlinearly with sound waves in a photon gas is
subjected to modulational and filamentational instabilities. Starting from a new set of coupled equations
governing nonlinear photon-photon interactions, we derive a dispersion relation which depicts the
temporal and spatial amplification rates of the modulational and filamentational instabilities. The long
term behavior of the modulationally unstable waves renders collapse of a photon beam as well as the
formation of cylindrically symmetric photonic solitons. The results can have relevance to the under-
standing of the nonlinear photonic pulse propagation in astrophysical environments as well as in
forthcoming intense laser-matter interaction experiments.
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of the interaction. Nonlinear magneto-optics of vacuum
has been presented by Ding and Kaplan [12]. Four wave

through the cosmic microwave background, as well as
through an ionized medium that is produced owing to
In his classic paper, Karpman [1] derived a pair of
equations (hereafter referred to as the Karpman equa-
tions) which describe the dynamics of nonlinear coupled
high-frequency electromagnetic and ion-acoustic waves
in a nonrelativistic plasma. The Karpman equations are
useful for studying the modulational-filamentational in-
stability [2] of large amplitude electromagnetic waves in
an unmagnetized plasma. Bingham et al. [3] considered
the nonlinear coupling between incoherent photons (qua-
siparticles) and plasmons and reported the damping or
growth of Langmuir waves due to quasiparticle-wave
interactions. The nonlinear interaction is governed by the
Liouville equation [4–6] for random-phased quasipar-
ticles (photons) and a driven (by the quasiparticle pon-
deromotive force) Langmuir wave equation. Depending
upon the quasiparticle electric field spectrum, one can
have both damping and growth of Langmuir waves in
plasmas.

However, when the electromagnetic wave intensity is
extremely high, there appear new nonlinear interactions,
due to quantum electrodynamics effects (QED) [7–9],
between an electromagnetic pulse and a radiation back-
ground composed of ultrarelativistic particles [10]. Spe-
cifically, photon-photon scattering in vacuum is one of
the most fundamental mechanisms which can give rise to
the nonlinear optical effects. The expected nonlinear
interactions come from virtual creation and annihilation
of electron-positron pairs, giving rise to self-coupling of
strong electromagnetic fields via the vacuum polarization.
In the remote past, Bialynicka-Birula and Bialynicki-
Birula [11] considered photon propagation and photon
splitting in an external field and pointed out the impor-
tance of nonlinear effects predicted by the QED model.
The photon-photon scattering of intense laser radiation
predicted by QED can give rise to second harmonic
generation in a dc magnetic field due to broken symmetry
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interactions of intense radiation in an electron-positron
vacuum have been analyzed by Rozanov [13], while the
effects of homogeneous electric and magnetic fields on
self-action of intense coherent electromagnetic waves
have been studied in Ref. [14], including diffraction,
spatiotemporal dispersion, and vacuum nonlinearity.

Brodin et al. [15] proposed detection of QED vacuum
nonlinearities in Maxwell’s equations by the use of wave-
guides. They showed that photon-photon scattering gives
rise to self-interaction terms which are similar to the
nonlinearities due to the polarization in nonlinear optics
[16]. Based on their new nonlinear terms, they reported
the excitation of new modes which should facilitate de-
tection of QED associated nonlinearities in waveguides.
The self-interaction terms can also cause optical collapse
in vacuum [17]. In a recent paper, Marklund et al. [18]
have investigated the nonlinear interaction, due to QED
effects, between an intense electromagnetic pulse and a
radiation background. They derived a pair of equations,
which we refer to as the Marklund-Brodin-Stenflo equa-
tions, governing the nonlinear coupling between modu-
lated photon pulses and driven (by the radiation pressure)
acousticlike perturbations in the photon gas. They briefly
discussed focusing and collapse of an intense short pho-
ton pulse.

In this Letter, we use the Marklund-Brodin-Stenflo
equations [18] to investigate the modulational and fila-
mentational instabilities of an intense short electromag-
netic pulse propagating through a photon gas. For this
purpose, we derive a nonlinear dispersion relation and
analyze it both analytically and numerically. We also
present a simulation study of spatiotemporal evolution
of modulationally unstable photon wave packets as well
as their localization in the form of a photon bullet. The
present results should help to understand the nonlinear
propagation of intense photons (e.g., gamma ray bursts)
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intense laser-plasma interactions involved in the next
generation inertial confinement fusion schemes.

Let us consider the propagation of a plane intense
electromagnetic wave propagating through a radiation
gas which supports acousticlike perturbations. The latter
modulate the intense electromagnetic pulse whose disper-
sion properties are governed by [18]

!2 � k2c2
�
1� 2

3�E
�
; (1)

where ! and k are the frequency and wave vector of
intense photons, c is the speed of light in vacuum, and
the energy density of the radiation gas is denoted by E �
E0 � E1, where the perturbed energy density of the radia-
tion gas E1 � the equilibrium value E0 in the absence of
the electromagnetic pulse. By introducing the eikonal
representation and the WKB approximation [19] (viz.
j@Ep=@tj � j!Epj and jk̂kp � rEpj � jkpEpj), we obtain
from (1) a nonlinear Schrödinger equation for modulated
photons [18]. We have

i
�
@
@t

� ck̂kp � r
�
Ep �

c
2kp

r2
?Ep �

2

3
�ckpE1Ep � 0;

(2)

where the electric and magnetic fields of the intense pulse
are E � Epêe and B � Epk̂kp 	 êe=c, respectively, and êe is
the unit vector. Furthermore, we have denoted r2

? �
r2 � 
k̂kp � r�2 and � � ��, where �� � 14� and �� �
8� for the two different polarization states of the pho-
tons, and � � 22 �h3=45m4

ec5  1:63	 10�30 ms2=kg; 
is the fine constant, �h is the Planck constant, andme is the
electron mass.
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A photon gas, which supports acousticlike perturba-
tions, interacts with an intense photon pulse through self-
interaction between photons. The directions k̂kph �
kph=kph of the photons in the gas are approximately
random, giving the effective acoustic speed c=

���
3

p
in

the averaged fluid description of the photon gas.
Subsequently, acousticlike perturbations in the photon
bath are reinforced by the radiation pressure, and the
dynamics of acousticlike perturbations is governed by
[18]
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2

@t2

�
;
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where �0 is the permittivity of free space. Equation (3) has
been derived by combining the radiation hydrodynamic
equations (the momentum and energy conservation equa-
tions including the radiation pressure) in the photon gas.
The pair of equations (2) and (3) are referred to as the
Marklund-Brodin-Stenflo equations. They are signifi-
cantly different from the Karpman equations [1].

The dispersion relation for the modulational and fila-
mentational instabilities of a constant amplitude photon
pump 
!0;k0� can be found by linearizing Eqs. (2) and
(3) around the unperturbed state Ep � Ep0 and E1 � 0.
We consider perturbations of the form Ep � Ep0 �
ÊE�
p1 exp
i�� � ÊE�

p1 exp
�i�� and E1 � ÊE1 exp
i��, where
Ep0, ÊE�, and ÊE� are constants, and � � K � r��t. Here
� and K are the frequency and wave vector of the
acousticlike perturbations. The standard procedure of
the parametric instability analysis [20,21] can then be
introduced on Eqs. (1) and (2), yielding the nonlinear
dispersion relation
�
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W
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where K2 � K2
x � K2

y � K2
z � K2

x � K2
? and W �

1=�2E0 represents the energy density of the photon gas.
The dispersion relation for the filamentational instability
follows from (4) in the quasistationary limit, � � 0, and
for Kx � K?, so that we have

K2
x �

K4
?

4k2p
�

4

3
K2
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�0jEp0j
2

W
; (5)

where k̂kp �K � Kx. Equation (5) depicts that the fila-
mentation (Kx � iKi) of an intense photon beam sets in
if �0jEp0j2 > 3K2

?W=16k
2
p. The maximum spatial ampli-

fication rate, occurring at K? �
�������������
8�0=3

p
kpjEp0j=

�����
W

p
, is

Ki � 4�0jEp0j
2=3W.

Letting � � �r � i�i into Eq. (4) we solve it numeri-
cally for the real and imaginary parts (�r and �i, re-
spectively) of the modulation frequency, and plot them
againstK=kp in Figs. 1 and 2 for different values of kx and
the pump strength A � �0jEp0j2=W, respectively. An
intense photon beam with an electric field Ep0 
1034 V=m, propagating through a photon gas having the
energy density E0  0:1 J=m3 would give A �
�0jEp0j2=W  0:03, which ensures the threshold criteria
for the onset of modulational and filamentational insta-
bilities. Figure 1 shows that the growth rate of the modu-
lational instability is larger for higher values of Kx=K?,
and it attains a maximum value at certain K?=kp values
depending on the Kx=K? values. In Fig. 2 we see that the
growth rate is higher for larger values of the photon
pump intensity; the maximum growth rate scales linearly
with A.

Second, in the steady state Eqs. (2) and (3) can be put in
the form

2i
@Ep
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�
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@
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�
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2Ep � 0; (6)

where
�����
�0

p
Ep is normalized by 3

�����
W

p
=2
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p
and the space

variables x and r are in units of k�1
p . Equation (6) is a
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FIG. 1. The growth rate " (upper panel) and real frequency
�Re (lower panel) as a function of the wave number K? for
pump strength A � 0:02, where A � �0jEp0j

2=W, and different
values on Kx.
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multidimensional cubic Schrödinger equation, which has
the following integrals of motions [1]: I1 �

R
1
0 rjEpj

2dr
and I2 �

R
1
0 
j@Ep=@rj

2 � jEpj4=2�rdr, yielding the rela-
tion I2 � 
@2=@x2�

R
1
0 r

3jEpj2dr. For I2 < 0 we have spa-
tial collapse of the photon beam radius. The photon beam
will have a steady state profile if I2 � 0. In this case, the
diffraction is exactly balanced by the nonlinear focusing
effect, and one encounters a cylindrical soliton which
depends on x through a complex phase, i.e., Ep �
F
r� exp
ix=2�, where R is real satisfying the cylindrical
soliton equation
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FIG. 2. The growth rate " (upper panel) and real frequency
�Re (lower panel) as a function of the wave number K? for
different pump strengths A, where Kx � 0K?.
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Equation (7) has been numerically solved subjected to the
boundary conditions that @F=@r � 0 and F � F0 � 0 at
r � 0 and F
r� / K0
r� for large r, where K0
r� is the
modified Bessel function of the second kind. Since in
general, for large r, F
r� is a linear combination of I0
r�
and K0
r�, F
0� has to be adjusted so as to eliminate the
divergent solution I0
r�, exactly as in any eigenvalue
problem. It turns out that F
r� is a monotonic decreasing
function of r and approaches zero at large distances. This
represents a cylindrically symmetric photon bullet, also
known in nonlinear optics [16,22,23].

The coupled equations (2) and (3) are solved numeri-
cally in order to understand the spatiotemporal evolution
of a multidimensional photonic pulse. The results are
displayed in Fig. 3. The photon beam is propagating in
the x direction in an initially homogeneous photon gas,
giving rise to perturbations in the 
y; z� plane; thus we
assume that @=@x vanishes and consider the purely two-
dimensional problem in the 
y; z� plane, plus time. The
spatial y and z variables are scaled by k�1

p , the time t by

kpc��1, the energy fluctuations E1 by ��1, and the elec-
tric field Ep by 
�

����������
E0�0

p
��1. The resulting dimensionless

and parameter-free system of equations is written in the
form

@Ep
@t

� i
�
1

2
r2

?Ep �
2

3
E1Ep

�
; (8)
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�
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3
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2

3
r2jEpj2; (9)

and @F=@t � G, where F � E1 � 
2=3�jEpj
2 and in the

two-dimensional case studied here r2
? � r2 �

@2=@y2 � @2=@z2. We used periodic boundary conditions
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FIG. 3 (color online). The normalized photon energy density
�0jEpj

2=W as a function of the normalized spatial variables
kpy and kpz at different times kpct. We see that initially
uniformly distributed photon energy forms localized packages
which self-focus and collapse.
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in the domain 0 � y � 20# and 0 � z � 20#, with 64 in-
tervals in each direction. The y and z derivatives were
approximated with a pseudospectral method and the
system was advanced in time by the fourth-order
Runge-Kutta scheme, with time step �t � 0:5. The initial
condition at time t � 0 was Ep �

���������
0:02

p
, corresponding

to the case A � 0:02 in the theoretical investigation of
Fig. 2. A low amplitude noise (random numbers) of the
order 10�4 was added to Ep to give a seed for any
instabilities.

The numerical results are displayed in Fig. 3 (in di-
mensional units), where we observe the self-focusing and
collapse of wave packets occurring at different times. As
can be seen in Fig. 3, the initially almost homogeneous
electric field has at the time kpct � 100 developed wave
packets, which at the last time kpct � 400 have collapsed
to strongly localized wave packets. As predicted by
Marklund et al. [18], we find that the energy and electric
field scale approximately as E1 � 2��0E0jEpj2 in the
linear (slow) growth phase but deviate more in the rapid
collapse phase of the wave packet. We note that the col-
lapse of photonic pulses proceeds on a time scale much
longer than the photon oscillation period, which is con-
sistent with the slowly varying envelope approximation
made in the derivation of Eqs. (2) and (3).

To summarize, we have presented an investigation of
the modulational and filamentational instabilities of an
intense coherent electromagnetic pulse in a photon gas
composed of relativistically hot quasiparticles (photons).
For this purpose, we used the recently derived nonlinear
system of equations of Marklund et al. [18] and derived a
nonlinear dispersion relation in the presence of a constant
amplitude photon pump. The dispersion relation reveals
that the latter is modulationally unstable against nonre-
sonant finite frequency acoustic perturbations. On the
other hand, photon beams are also subjected to a fila-
mentational instability, which can break the photon
beams apart and can produce light pipes. We have also
performed simulation studies of the Marklund-Brodin-
Stenflo equations to understand the long term behavior of
the modulationally or filamentationally unstable intense
photon beams. In the steady state, we have found a multi-
dimensional cubic Schrödinger equation which admits a
cylindrically symmetric photon bullet. Our results exhibit
the modulation of the photon wave packet as well as their
collapse forming a localized light bullet. The present
results should thus help to understand the salient features
of nonlinear effects caused by intense short photonic
pulses (e.g., gamma ray bursts), while they propagate
through the medium which is composed of relativistically
hot quasiparticles (photons). Such a situation is common
in astrophysical environments [24] as well as in labora-
tory experiments involving the use of powerful lasers
(peak radiation intensity of up to 1021 W=cm2, corre-
073601-4
sponding to the present peta-Watt laser experiments)
which would produce QED phenomena, as described in
this Letter.
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