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Five-Dimensional Fission-Barrier Calculations from 70Se to 252Cf
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We present fission-barrier-height calculations for nuclei throughout the periodic table based on a
realistic macroscopic-microscopic model. Compared to other calculations (i) we use a deformation space
of a sufficiently high dimension, sampled densely enough to describe the relevant topography of the
fission potential, (ii) we unambiguously find the physically relevant saddle points in this space, and
(iii) we formulate our model so that we obtain continuity of the potential energy at the division point
between a single system and separated fission fragments or colliding nuclei, allowing us to (iv) describe
both fission-barrier heights and ground-state masses throughout the periodic table.

DOI: 10.1103/PhysRevLett.92.072501 PACS numbers: 24.75.+i, 21.10.Dr, 25.70.Gh, 21.60.Cs
coordinates. The fission-barrier height is given by the the Wigner and A0 macroscopic energies are neglected,
It has been notoriously difficult to calculate in a con-
sistent theoretical model with microscopic content both
fission barriers and ground-state masses for nuclei
throughout the periodic table. So far this has only been
possible in the framework of a macroscopic-microscopic
model [1,2]. However, developments in the area of
nuclear fission show that these earlier studies can now
be improved.

On the experimental side it became clear that the
barrier data for the two lightest nuclei previously used
in the determination of model constants are incorrect. In
addition, a series of measurements of fission-barrier
heights of nuclei with atomic numbers in the neighbor-
hood of A � 100 are now available [3–5]. Barrier heights
calculated for these light nuclei using the model from
Ref. [1] are from one to 5 MeV too low [6,7].

On the theoretical side we have recently shown that
five-dimensional deformation spaces with the potential
energy defined on millions of points are necessary to
determine properly the details of the potential energy
such as the locations and heights of the fission saddle
points [8,9]. This large deformation space is in stark
contrast to one with 3 degrees of freedom and 175 defor-
mation points previously used to determine the locations
and heights of saddle points [1,2]. Moreover, it has been
clear for some time that the Wigner and A0 macroscopic
terms in these nuclear mass models must have a shape
dependence [10]. This was ignored in previous global
calculations [1,2,6,7] and only incorporated in some of
our more limited fission-barrier studies, for example [11].

In nuclear fission the nucleus evolves from a single
ground-state shape into two separated fission fragments.
During the shape and configuration changes that occur in
this process the total energy of the system initially in-
creases up to a maximum, the fission-barrier height, then
decreases. Calculations of fission barriers involve the
determination of the total nuclear potential energy for
different nuclear shapes. Such a calculation defines an
energy landscape as a function of a number of shape
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energy relative to the ground state of the most favorable
saddle point that has to be traversed when the shape
evolves from a single shape to separated fragments. We
use a technique borrowed from the area of geographical
topography studies, namely, immersion (‘‘imaginary
water flow’’) [12–14], to determine the structure of the
high-dimensional fission potential-energy surfaces [8,9].

A number of models exist for the nuclear potential
energy. At first sight, it would seem attractive to employ
a self-consistent mean-field (SMF) model using effective
forces, for example, a Hartree-Fock (HF) or Hartree-
Fock-Bogolyubov (HFB) model with Skyrme or Gogny
effective interactions [15–17], or a relativistic Dirac-
Hartree model with scalar and vector interactions [18].
Global HF mass calculations have recently been presented
[19,20]. However, at least two major problems with such
calculations remain unresolved. First, no effective force
has been found which can describe both nuclear masses
and fission barriers for nuclei of all mass numbers.
Second, even if an appropriate effective interaction could
be determined, it is extremely difficult, and in practice
has so far proven impossible unambiguously to locate an
actual saddle-point configuration in SMF models. There
exists a common misconception that constrained self-
consistent HF or HFB calculations with Skyrme or
Gogny forces automatically take into account all noncon-
strained shape variables in a proper manner. In fact, the
apparent saddle points that appear in constrained HF
calculations in the general case have no relation to the
true saddle points; we give an illustrative example below.

For calculating the fission potential-energy surface
in this Letter, we adopt the macroscopic-microscopic
finite-range liquid-drop model (FRLDM) [2] general-
ized to account for all required shape dependencies of
its various macroscopic terms. In contrast the finite-
range droplet model (FRDM) [2] cannot be generalized
in this way. In Fig. 1 we illustrate the large discontinui-
ties that occur at the transition point between single
and separated systems when the shape dependences of
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FIG. 1. Calculated macroscopic and total potential energies,
for shape sequences leading to the touching configuration, at
the long-dashed line, of spherical 78Zn and 208Hg. To the left
the calculations trace the energy for a single, joined shape
configuration from oblate shapes through the spherical shape at
r � 0:75 to the touching configuration at r � 1:52; to the right
the calculations trace the energy for separated spherical nuclei
beyond the touching point. The continuous path through five-
dimensional space from the ground state to the touching
configuration is arbitrary; the key point is that the limiting
shapes when approaching the line of touching from the left and
right are identical, namely, spherical 78Zn and 208Hg in contact.
At a specific value of r all curves are calculated for the same
shape. To obtain continuity of the macroscopic energy at
touching, a crucial feature in realistic models, it is essential
that various model terms depend appropriately on nuclear
shape, as is the case for the curves (a). The slight remaining
discontinuity in the total fusion energy curve arises because the
Fermi surfaces of the nuclei readjust at touching, and because
pairing and spin-orbit strength parameters also undergo small
discontinuous changes there.
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and the continuous behavior exhibited for the current
formulation.

In the macroscopic-microscopic approach, it is impor-
tant that the shape description be flexible enough to al-
low accessing those configurations which are physically
important to the fission process. In addition to the com-
monly used elongation, necking and mass-asymmetry
degrees of freedom, it is essential to include the deforma-
tions of the partially formed fragments. This is because
the microscopic binding due to fragment shell structure,
which is sensitive to the fragment deformations, can be
as large as 5 MeV even for shapes with a fairly large
neck radius. We use the three-quadratic-surface (3QS)
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shape parametrization [9,21] to describe shapes with
these 5 degrees of freedom. By investigating the scale
over which the microscopic energy varies significantly,
we determine the coordinate mesh upon which we need to
define the energy. We find that we get a reasonable cover-
age of the space by defining a grid of 15 points each in the
neck diameter and left and right fragment deformations,
20 points in the mass asymmetry, and 41 points in the
nuclear elongation. A few grid points do not refer to real
shapes, so we are left with a grid of 2 610 885 points [9].

In an unconstrained mean-field calculation, one starts
with some initial density, usually defined in terms of
trial wave functions, then determines new wave func-
tions which are solutions of the potential derived from
the density. By iterating to convergence one finds a local
minimum: the nuclear ground state or possibly a fission-
isomeric state. To try to find a fission barrier, some have
chosen to solve a constrained problem, which leads to the
minimum-energy state subject to the constraint, often
taken to be the quadrupole moment. By applying a series
of constraints with increasing deformation, a curve of
energy as a function of constrained deformation is found.
Such curves often exhibit discontinuities and may not
pass through the real saddle point in multidimensional
space as is discussed in more detail in Refs. [8,22].

In a macroscopic-microscopic calculation one should in
principle be able to locate saddle points by solving for all
shapes that have a zero derivative of the energy with
respect to all the degrees of freedom. This method works
for a purely macroscopic-model [7], but macroscopic-
microscopic models using the Strutinsky shell-correction
technique [23,24], are subject to fluctuations when small
shape changes are made, making it difficult to obtain
accurate derivatives by numerical techniques. Even if all
saddle points in a high-dimensional space could be found
in this way, one must still understand the topography and
deduce which saddle would correspond to the actual peak
of the barrier. Before the breakthrough study in Ref. [13],
what has usually been done in calculations involving more
than 2 degrees of freedom is to first define a two-dimen-
sional space of two primary shape coordinates. For each
point in this two-dimensional space the energy is then
minimized with respect to a set of additional shape
degrees of freedom. It was incorrectly assumed that if
no discontinuities occurred in this two-dimensional sur-
face then its saddle points would be identical to the saddle
points in the full, higher-dimensional space. For all but
the most structureless functions this procedure is incor-
rect and may actually result in more inaccurate saddle
points than if only the original two-dimensional space is
studied.

We illustrate in Fig. 2 some of the problems that one
may encounter in either a constrained SMF calculation or
in a macroscopic-microscopic model when attempting to
reduce the dimensionality of a problem via minimization
while preserving the essential features of the potential
072501-2



TABLE I. Macroscopic model parameters of the FRLDM
(1992) and those obtained in the present adjustment, designated
FRLDM (2002) using barrier heights obtained in our five-
dimensional calculation.

Constant FRLDM (1992) FRLDM (2002)

av 16.00126 MeV 16.02500 MeV
�v 1.92240 MeV 1.93200 MeV
as 21.18466 MeV 21.33000 MeV
�s 2.34500 MeV 2.37800 MeV
a0 2.61500 MeV 2.04000 MeV
ca 0.10289 MeV 0.09700 MeV
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FIG. 2. Maxima (�), minima (�), and saddle points (arrows
or crossed lines) of a two-dimensional function. As discussed
in the text it is not possible to obtain a lower-dimensional
representation of this surface by ‘‘minimizing’’ with respect to
the ‘‘additional’’ (�) shape degree of freedom. Darker shades of
gray indicate higher function values. Alternate contour bands
are light gray for readability.

TABLE II. Calculated barriers for 31 nuclei compared to
experimental data. The first 5 barriers are macroscopic barriers.

Eexp Ecalc �E Eexp Ecalc �E
Z A (MeV) (MeV) (MeV) Z A (MeV) (MeV) (MeV)

34 70 39.40 37.58 1.81 92 238 5.50 5.48 0.01
34 76 44.50 43.84 0.65 92 240 5.50 6.27 �0:77
42 90 40.92 40.92 �0:00 94 236 4.50 4.35 0.14
42 94 44.68 44.20 0.47 94 238 5.00 4.39 0.60
42 98 45.84 46.88 �1:04 94 240 5.15 4.83 0.31
80 198 20.40 21.41 �1:01 94 242 5.05 5.55 �0:50
84 210 21.40 22.02 �0:62 94 244 5.00 6.29 �1:29
84 212 19.50 20.20 �0:70 94 246 5.30 7.01 �1:71
88 228 8.10 7.45 0.64 96 242 5.00 4.28 0.71
90 228 6.50 6.47 0.02 96 244 5.10 5.02 0.07
90 230 7.00 5.65 1.34 96 246 4.80 5.81 �1:01
90 232 6.20 5.45 0.74 96 248 4.80 6.41 �1:61
90 234 6.50 5.36 1.13 96 250 4.40 5.98 �1:58
92 232 5.40 4.67 0.72 98 250 3.60 5.88 �2:28
92 234 5.50 4.89 0.60 98 252 4.80 5.63 �0:83
92 236 5.67 4.98 0.68
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energy. We assume the � coordinate corresponds to the
fission direction and � to all other degrees of freedom.
Because of the multiple saddle points, it is not clear
a priori which one would correspond to the fission thresh-
old. We identify the point � � �100, � � 6 as the
ground state or fission-isomer state and proceed to find a
‘‘constrained’’ fission barrier. From the starting point we
increase � by 40 (smaller steps will not alter the result)
while keeping � fixed. From the new position we then
minimize with respect to � and find ourselves at the first
black dot. When we repeat this process we obtain the dot-
dashed curve. The energy along this path is a continuous
function and the white arrow would be identified as the
fission saddle point. However, this saddle is higher than
those shown by gray arrows, which can be identified only
when the full space is explored. Of course in a constrained
SMF calculation the convergence towards a solution is
more complex than ‘‘sliding downhill,’’ since the wave
functions and potential change during this process.
However, solutions of constrained SMF equations do
show similar behavior; often converging to a local mini-
mum which depends on the starting configuration, a
process similar to what is sketched in Fig. 2.

The fundamental point is that the fission saddle point
can be determined only from global properties of the
multidimensional energy surface, not from local excur-
sions from a specific starting point. We therefore imple-
ment the immersion method mentioned above and first
identify all minima by locating the points which have a
lower energy than all 3n � 1 neighboring points in
n-dimensional coordinate space. We then progressively
fill up the ground-state minimum with ‘‘water,’’determin-
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ing when a prespecified point in the fission valley be-
comes ‘‘wet.’’ By adjusting the increase in the water level
carefully we are able unambiguously to identify the
location and energy of the grid point nearest to the true
saddle.

Because we are studying a higher-dimensional defor-
mation space with over 10 000 times as many points as in
previous calculations, we find that the saddles for a given
nucleus are always lower than those found for the same
model parameters in our earlier studies [2,8]. This means
we need to redetermine the parameters of our nuclear-
structure model. Because new parameter sets may change
the location of the saddle points and minima, an iterative
procedure is in principle required. However, these
changes in deformation are small; here we do just the first
iteration and vary six parameters of the macroscopic
energy functional to optimize the reproduction of both
ground-state binding energies and fission-barrier heights.
072501-3
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FIG. 3. Comparison of calculated and experimental fission-
barrier heights for nuclei throughout the periodic table, after a
readjustment of the macroscopic model constants. Experi-
mental barriers are well reproduced by the calculations, the
rms error is only 0.999 MeV for 31 nuclei. In the actinide region
it is the outer of the two peaks in the ‘‘double-humped’’ barrier
that is compared to experimental data.
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This process is identical to the one followed in the crea-
tion of our 1995 mass table [2]. We show in Table I the
constants from Ref. [2] (determined in 1992) and those
obtained in our readjustment taking into account the
larger deformation space in locating the fission saddle
points. We have made a number of tests which allow
us to conclude that a self-consistent redetermination of
the ground-state and saddle-point deformations would
change our calculated energies by less than 0.1 MeV.

These constants (in particular a0) differ slightly from
the preliminary set presented in Ref. [25]. Those con-
stants were affected by an error in the expression for the
a0 energy term in the constant-adjustment program.
However, none of the other previous results, conclusions,
or figures were affected significantly by this computer-
program bug. Here we have checked the calculation of
macroscopic-model saddle-point shapes and energies by
the use of two independently written codes. The micro-
scopic energy model is unchanged from [2].

The 1992 calculation reproduced an experimental 1989
nuclear mass table [26] with a model error of 0.779 MeV,
and 28 barrier heights with an rms error of 1.4 MeV. The
revised data set here [4,5,27] incorporates seven new
experimental barrier heights and removes four old ones.
The fit to the revised table of 31 barriers has an rms error
of 0.999 MeV, and the fit to the same 1989 mass table has a
model error of 0.752 MeVusing the parameters in the last
column of Table I. We show the experimental and calcu-
072501-4
lated barrier heights as well as remaining discrepancies in
Table II and Fig. 3.
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