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Quantum Suppression of the Generic Chaotic Behavior Close to Cosmological Singularities
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In classical general relativity, the generic approach to the initial singularity is very complicated as
exemplified by the chaos of the Bianchi IX model which displays the generic local evolution close to a
singularity. Quantum gravity effects can potentially change the behavior and lead to a simpler initial
state. This is verified here in the context of loop quantum gravity, using methods of loop quantum
cosmology: The chaotic behavior stops once quantum effects become important. This is consistent with
the discrete structure of space predicted by loop quantum gravity.
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FIG. 1. The potential is shown for V � 30 in Planck units.
Along the z axis is plotted the logarithm of the potential
(shifted so that it is larger than 1 everywhere). Its form
does not change with volume due to the factorized volume
patch at a certain time leads to new patches with slightly dependence.
According to the celebrated singularity theorems of
classical general relativity, the backward evolution of an
expanding universe leads to a singular state where the
classical theory ceases to apply. An extensive analysis of
the approach to the singularity, in the general context of
inhomogeneous cosmologies, has culminated in the
Belinskii-Khalatnikov-Lifschitz scenario [1]. According
to this scenario, as the singularity is approached, the
spatial geometry can be viewed as a collection of small
patches, each of which evolves essentially independently
as a homogeneous model, most generally the Bianchi IX
model. This is justified by the observation that interac-
tions between the patches are negligible because time
derivatives dominate over space derivatives close to a
singularity.

The approach to the singularity of a Bianchi IX model
is described by a particle moving in a potential with
exponential walls (corresponding to the increasing cur-
vature) bounding a triangle (Fig. 1). During its evolution,
the particle is reflected at the walls resulting in an infinite
number of oscillations (of the scale factors) when the
singularity is approached. This classical behavior can be
shown to lead to a chaotic evolution by using an analogy
with a billiard valid in the asymptotic limit close to the
singularity [2].

To appreciate implications of the chaotic approach to
the Bianchi IX singularity, observe that at any given time
the spatial slice can be decomposed into a collection of
almost homogeneous patches, the size of the patches
being controlled by the magnitude of space derivatives
in the equations of motion. During subsequent evolution
when the curvatures grow, these patches have to be sub-
divided to maintain the homogeneous approximation.
This subdivision is also controlled by evolution of the
individual patches. Since the patches are homogeneous
only to a certain approximation, a subdivision of a given
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different initial conditions. The chaotic approach to the
Bianchi IX singularity then implies that their geometries
will depart rapidly from each other, and the patches have
to be fragmented more and more the closer one comes to
the singularity. This rapid fragmentation suggests a very
complicated and presumably fractal structure of the spa-
tial geometry at the classical singularity. Note that both of
these features, the breaking up of a spatial slice into ap-
proximately homogeneous patches and the unending os-
cillatory approach to the singularity of individual
patches, are ultimately consequences of the unbounded
growth of the spatial curvature, i.e., the singularity.

However, the classical evolution towards the singular-
ity is expected to break down when the curvatures be-
come too large and to be replaced by quantum dynamics.
If we truncate the classical model at a certain lowest
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volume, technically chaos does not occur. It is a natural
question to ask if the qualitative features of the chaotic
approach continue to survive quantum modifications. The
answer to this question is neither obvious nor independent
of concrete theories of quantum gravity and must be ex-
plored within the context of a specific candidate theory.

For instance, effective actions with extra terms and
additional fields motivated from string or M theories do
not lead to a nonchaotic behavior [3] and, thus, retain
their implications for fragmentation in the context of a
general inhomogeneous singularity. On the other hand,
loop quantum gravity [4,5] predicts a discrete structure of
space. For these theories, an unlimited fragmentation of
space would be inconsistent with the discrete structure,
and one would expect a qualitative modification of the
chaotic approach. This translates into a self-consistency
test for such theories. Thus, a quantum theory of
gravity with a discrete structure of space must, for self-
consistency, provide a mechanism which prevents the
unlimited fragmentation in the expected general ap-
proach to a classical singularity.

In this Letter, we use methods of loop quantum cos-
mology [6–8], a part of loop quantum gravity, to study
this issue. This allows us to obtain explicit, nonperturba-
tive modifications of the classical behavior at a small
volume which can be analyzed for their implications for
chaos. Loop quantum cosmology has already led to a
resolution of conceptual problems such as a nonsingular
evolution [9] and also given a new scenario for inflation
[10] which is based on the small-volume modifications.
The proof of absence of singularities extends to homoge-
neous models, in particular, the Bianchi IX model [7,8].
The investigations of this Letter will provide a new con-
sistency check of loop effects and their physical viability.
Specifically, quantum modifications for the vacuum
Bianchi IX model (central to the issue of a chaotic ap-
proach) are presented and shown to prevent the chaotic
behavior.

The dynamics of the Bianchi IX model can be formu-
lated on its minisuperspace spanned by the positive scale
factors aI, I � 1; . . . ; 3, related to the diagonal metric
components gII � a2I . It is given by the Hamiltonian
constraint
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2
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are the spin connection components. Thus, the potential
term obtained from (1) is given by
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In order to diagonalize the kinetic term of (1), one can
introduce the Misner variables [11]: the logarithmic
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Evidently, the 
 dependence factorizes, and one obtains
an anisotropy potential V ���; ��� which exhibits
exponential walls for large anisotropies as displayed
in Fig. 1. A typical wall can be derived from the po-
tential by setting �� � 0 and taking �� to be nega-
tive, e.g., W�a1; a1; V=a21� �

1
2 e

�4
�e�8�� � 4e�2��� �
1
2 e

�4
�8�� .
The wall picture implies that the Universe, described

by a particle moving in such a potential, runs through
almost free (Kasner) epochs where the potential can be
ignored, interrupted by reflections at the walls where the
expansion/contraction behavior of different directions
changes. The infinite number of these reflections implies
that the system behaves chaotically.

One can see that the infinite height of the walls is a
consequence of the diverging intrinsic curvature in �I for
small and large aI. In the classical evolution, each aI will
eventually become arbitrarily small as the singularity is
approached, e.g., a1 and a2 for the typical wall above.
However, at a certain stage of the evolution, quantum
gravity is expected to become important, which will lead
to a modification of the behavior. Clearly, a necessary
condition for the chaotic behavior to be prevented by the
quantum modification is that quantum gravity should
effectively contain an upper limit on the curvature such
that the walls would have only finite height, changing the
whole scenario.

A quantum theory where such a maximal curvature
follows is loop quantum cosmology [12,13]. The origin of
this upper bound for the curvature lies in the quantization
of the relevant quantities and can be compared concep-
tually to the finite ground state energy of the hydrogen
atom obtained after quantization. In the classical equa-
tions of motion, one can incorporate this feature of loop
quantum cosmology by replacing the �I with effective
coefficients which are derived from the quantization [8].
This leads to the corresponding effective potential.

The new, effective potential is more complicated than
the original one. Nonetheless, for a large volume, the
effective potential approximates the original one. It is
significantly different for small volumes and is respon-
sible for the breakdown of chaos. The volume dependence
does not factorize, making the analysis of the classical
motion (with volume as internal time) harder. One should
also keep in mind that the analysis done here uses only
the effective classical description which includes some
nonperturbative quantum effects in the potential. The
071302-2
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FIG. 2. Effective wall (5) of finite height for j � 1, V � 10 as
a function of x � ���, compared to the classical exponential
wall (upper dashed curve). Also shown is the exact wall
Wj�p

1; p1; �V=p1�2� (lower dashed curve), which for x smaller
than the peak value coincides well with the approximation (5)
up to a small, nearly constant shift.
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full quantum evolution is much more complicated and
is given by a partial difference equation for the wave
function [8].

Using the effective potential in classical equations of
motion is sufficient to shed light on the above consistency
requirement, even though it is not valid close to the
classical singularity. The underlying dynamical equation
of loop quantum cosmology contains a parameter, j,
which appears as a quantization ambiguity [14]. Its value
controls the size of the Universe where the maximal
curvature is attained. By choosing it to be sufficiently
large, one can move the quantum effects in the effective
potential into the semiclassical domain. Those large val-
ues may not be expected or natural from a physical point
of view, but they allow us to study the consistency issue in
a simplified setting. A necessary requirement for consis-
tency of the quantum theory then is that the effective
classical description stops the Bianchi IX oscillations at
some volume.

To be more explicit, one first has to introduce densitized
triad variables jpIj � V=aI, with the volume V �

a1a2a3 �
�������������������
jp1p2p3j

p
, which become basic operators in

loop quantum gravity. For convenience, we have taken
them to be dimensionless by setting 1

2�‘
2
P � 1 in the

notation of [8]. Their inverses jpIj�1 do have well-defined
quantizations as finite operators, despite the classical
curvature divergence at pI � 0 which is eliminated by
quantum effects [12]. One can model its effect in the
classical behavior by replacing �pI��1 in the spin con-
nection components by a function F�pI=2j� to get an
effective spin connection which includes nonperturbative
quantum effects. The function F is derived directly from
a quantization [14]. The ambiguity parameter j appears
explicitly and controls the peak of F.

The potential W then gets replaced by an effective one,
Wj, by using the effective instead of the classical spin
connection components. One can again obtain the typical
wall behavior, this time by evaluating Wj�p

1; p1; �V=p1�2�
as a function of p1 at fixed volume. At these arguments,
with p1 large enough but V=p1 not too small, the com-
plicated expression simplifies to just two dominant terms.
As a function of p1 and the volume, the typical wall
becomes (see Fig. 2)

Wj�p1; p1; 2jq� �
V4F2�q�

32j4q2
f3� 2qF�q�g; (5)

where we have used the notation q :� 1
2j �V=p

1�2.
For values at the peak or larger, F�q� � q�1, and the

classical wall 1
2 e

�4
�8�� is reproduced. The peak of the
finite walls is reached for a constant argument q of F
which in Misner variables implies that e�2
�2�� is con-
stant. Thus, the wall maxima lie on the line �� � 
�
const in the classical phase space, and the height of the
wall drops off as e�12
 / V4 with decreasing volume. At
a very small volume, however, the walls collapse even
more rapidly, and a numerical analysis shows that the
071302-3
potential becomes negative everywhere at a dimension-
less volume of about �2:172j�3=2 in Planck units, i.e., just
around the elementary discrete volume for the smallest
value j � 1=2.

In Fig. 3 are shown three snapshots of the effective
potential at decreasing volumes in the vicinity of the
isotropy point in the anisotropy plane. The potential at
larger volumes clearly exhibits a wall (positive potential)
of finite height and finite extent. As the volume is de-
creased, the wall moves inwards and its height decreases.
Progressively, the wall disappears completely making the
potential negative everywhere. Eventually, the potential
approaches zero from below.

This immediately shows that the classical reflections
will stop after a finite amount of time, rendering the
classical argument about chaos inapplicable. The volume
where the transition from the classical behavior to the
modified behavior takes place, i.e., the first time the
Universe can ‘‘jump over the wall,’’ depends on the initial
conditions but it will certainly happen—the latest at the
elementary discrete volume for the smallest value of the
ambiguity parameter.

Starting at large volumes, the Universe will pass
through several phases of Kasner evolution punctuated
by reflections. This will continue until the small-volume
modification of the effective potential comes into play.
The stability of a Kasner trajectory in the presence of the
modified potential will decide the nature of subsequent
deviations after the ‘‘last’’ Kasner epoch. Pleasingly, the
Kasner trajectories turn out to be stable in the presence of
the effective potential [15]. By contrast, these are un-
stable in the presence of the classical potential.

Intuitively, this gives us a natural and consistent picture
of the approach to a classical singularity in a quantum
theory with a discrete structure of space: At a larger
071302-3
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FIG. 3. The modified effective potential is plotted for j � 5 at volumes 150, 100, and 30 in Planck units for �1:5 � �� � 1:5.
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volume, the system follows the complicated classical
evolution with different Kasner phases interrupted by
reflections at the walls. As described previously, in the
context of an inhomogeneous space this leads to a frag-
mentation into smaller and smaller patches. Once quan-
tum effects are taken into account, the reflections stop
just when the volume of a given patch is about the size of a
Planck volume, i.e., at the scale of the discreteness. Below
that scale, a further fragmentation does not take place
and the discrete structure is preserved. We again empha-
size that the modifications used here become important at
the latest when the Planck scale is reached, implying
consistency with the expectations from a discrete struc-
ture. Below this scale, though, the effective classical
description should be superseded by the quantum descrip-
tion. We also emphasize that the existence of a maximal
curvature is a consequence of quantization and not put in,
in an ad hoc manner. The results thus constitute a con-
sistency test for loop quantum gravity.

This also indicates that the results of [7–9,16] which
prove a nonsingular quantum evolution of homogeneous
models can be generalized to the full theory, removing
also inhomogeneous classical singularities. At the present
stage, however, the results for the general case are to be
regarded as preliminary and have to be supported by
more general techniques directly in inhomogeneous
quantum models.
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of the Fifth Mexican School (DGFM): The Early
Universe and Observational Cosmology, Lecture Notes
in Physics (Springer-Verlag, Berlin, to be published), gr-
qc/0306008.

[7] M. Bojowald, Classical Quantum Gravity 20, 2595
(2003).

[8] M. Bojowald, G. Date, and K. Vandersloot, Classical
Quantum Gravity 21, 1253 (2004).

[9] M. Bojowald, Phys. Rev. Lett. 86, 5227 (2001).
[10] M. Bojowald, Phys. Rev. Lett. 89, 261301

(2002).
[11] C.W. Misner, Phys. Rev. Lett. 22, 1071

(1969).
[12] M. Bojowald, Phys. Rev. D 64, 084018 (2001).
[13] T. Thiemann, Classical Quantum Gravity 15, 1281

(1998).
[14] M. Bojowald, Classical Quantum Gravity 19, 5113

(2002).
[15] M. Bojowald, G. Date, and G. M. Hossain (to be pub-

lished).
[16] M. Bojowald, Classical Quantum Gravity 19, 2717

(2002).
071302-4


