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It has been suggested that the Universe’s recent acceleration is due to a contribution to the gravita-
tional action proportional to the reciprocal of the Ricci scalar. Although the original version of this
theory disagrees with solar system observations, a modified Palatini version, in which the metric and
connection are treated as independent variables, has been suggested as a viable model of the cosmic
acceleration. We show that this theory is equivalent to a scalar-tensor theory in which the scalar field
kinetic energy term is absent from the action. Integrating out the scalar field gives rise to additional
interactions among the matter fields of the standard model of particle physics at an energy scale of order
10�3 eV (the geometric mean of the Hubble and the Planck scales), and so the theory is excluded by, for
example, electron-electron scattering experiments.

DOI: 10.1103/PhysRevLett.92.071101 PACS numbers: 04.50.+h, 98.80.Es
from the action. Integrating out the scalar field gives rise
to additional interactions among the matter fields of the The action now simplifies to
The observed acceleration of the Universe’s expansion
[1,2] is normally attributed to so-called dark energy, that
is, an additional source of gravity such as a cosmological
constant or a quintessence field. However, it has recently
been suggested that the acceleration is due instead to a
modification of gravity at cosmological distance scales
[3,4]. In particular, Carroll et al. [4] suggested a gravita-
tional action of the form
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where R is the Ricci scalar, �2 � 8	G, and � is a mass
scale of order the Hubble scale; see also Refs. [5–9].
Chiba [6] showed that the theory (1) is equivalent to a
scalar-tensor theory [10] with a very light scalar field that
couples to matter with gravitational strength. This theory
is therefore ruled out by solar system experiments [6].

However, a modified version of the theory (1) can be
obtained by treating the metric and the connection as
independent dynamical variables in the variational prin-
ciple, as suggested by Vollick [5]. For general relativity,
this Palatini or first-order variational principle is equiva-
lent to the more usual variational principle where the
connection is taken to be determined by the metric.
However, for actions that are nonlinear functions of the
Ricci scalar, the Palatini variational principle and the
standard variational principle give rise to inequivalent
theories. The Palatini version of the theory (1), like the
original version, can explain the recent acceleration of the
Universe’s expansion [5,8], but, unlike the original form,
has not been shown to be in conflict with solar system
experiments.

In this Letter we show that the Palatini form of the
theory (1) is equivalent to a type of scalar-tensor theory
in which the scalar field kinetic energy term is absent
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standard model at an energy scale of order 10�3 eV, and
so the theory is excluded by particle physics experiments.

We start by reviewing the equivalence of higher-order
gravity theories of the form (1) to scalar-tensor theories
[11]. Consider an action of the form

S� 	gg��;  m� �
1
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Z
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f� 	RR� � Sm� 	gg��;  m�: (2)

Here 	gg�� is the metric (which we have barred for later
notational convenience), 	RR is its Ricci scalar, and f is any
function. The second term is the matter action Sm, which
is some functional of the matter fields  m and of the
metric. We use units in which 	h � c � 1, and we use the
sign conventions of Ref. [12].

We introduce an extra scalar field ’ into the theory by
defining a modified action [11]

~SS� 	gg��; ’;  m� �
1
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�f�’� � � 	RR� ’�f0�’��

� Sm� 	gg��;  m�: (3)

The ’ equation of motion obtained from this action is
’ � 	RR, as long as f00�’� � 0, and thus the theory (3) is
classically equivalent to the original theory (2). Next, we
define a conformally rescaled metric g�� by

	gg �� � e2��’�g��; (4)

where � is the function of ’ given by

e2��’�f0�’� � 1; (5)

and we introduce the canonically normalized scalar field
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This has the form of a scalar-tensor theory [10], written
in terms of the Einstein-frame metric g��. The potential
for the scalar field is

V �
’f0�’� � f�’�

2�2f0�’�2
; (8)

and the coupling function ���� is given by

���� � �
����
6

p �: (9)

In this class of theories, the scalar field couples to
matter with essentially the same strength as does gravity
[6]. A measure of the ratio of the scalar coupling to the
gravitational coupling is [10]
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where � is the parametrized post-Newtonian parameter.
Solar system experiments show that j�� 1j � 3 10�4

[13], and thus the theory (7) is ruled out unless the
potential V��� is such that the field � is massive and
short ranged [6]. For the model (1), the potential (8) is
[4,6]
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For this theory to explain the cosmic acceleration,
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we require ��H0, where H0 � 1:5 10�33 eV is the
Hubble scale, and the resulting present-day effective
mass

��������������
V 00���

p
of the scalar field is �H0 at ��� 1.

Thus this theory is not viable [6].
Turn now to the Palatini form of the theory (2).We first

review the formulation of this theory given by Vollick [5].
The action is a function of the Jordan-frame metric 	gg��, a
symmetric connection r̂r�, and the matter fields  m. We
can use instead of the connection r̂r� the tensor field H�

��
defined by r̂r�v

� � 	rr�v
� � H�

��v
� for any vector field

v�, where 	rr� is the connection determined by the metric
	gg��. The action takes the form [5]
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where R̂R � 	gg�� R̂R�� and R̂R�� is the Ricci tensor of the
connection r̂r�, given by

R̂R �� � 	RR�� � 	rr�H�
�� �
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Varying the action with respect to H�
�� gives an equation

of motion whose unique solution is [5]
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��
	rr�� lnf0�R̂R� �

1
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Equation (14) is equivalent to the statement that the
connection r̂r� is compatible with the metric f0�R̂R� 	gg��.
Varying the action with respect to the metric and sim-
plifying using Eq. (14) yields f0�R̂R�R̂R�� � f�R̂R� 	gg��=2 �
�2 	TT��, where 	TT�� is the stress-energy tensor. The trace-
less part of this equation can be written as
�
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�T���TL; (15)
where TL means ‘‘the traceless part of.’’ The trace gives
the algebraic relation

f0�R̂R�R̂R� 2f�R̂R� � �2 	TT; (16)

which can be used to solve for R̂R in terms of 	TT � 	gg�� 	TT��.
The Ricci scalar of the metric 	gg�� is then given by
the contraction of Eq. (13): 	RR � R̂R� 3 	�� lnf0�R̂R� �
3� 	rr lnf0�R̂R��2=2. These equations replace the usual
Einstein equations, and the corresponding Friedmann-
Robertson-Walker cosmological models have been
studied by Refs. [5,8].

We now show that the theory (12) is equivalent to a
type of scalar-tensor theory. We make the ansatz that the
connection r̂r� is compatible with the metric e2� 	gg�� for
some scalar field �, which implies

H�
�� � 2����

	rr���� 	gg�� 	gg�� 	rr��: (17)

From Eq. (14) this ansatz is always satisfied by solutions
of the equations of motion. The action (12) now becomes
S� 	gg��; �;  m� �
1

2�2

Z
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� 	gg

p
f� 	RR� 6� 	rr��2 � 6 	����

� Sm� 	gg��;  m�: (18)

All stationary points of the action (12) will also be sta-
tionary points of the action (18), by construction. How-
ever, the converse is not true, since solutions of the
equations of motion of the theory (18) are stationary
only under a restricted set of variations of �H�

�� of the
connection. We discuss this point further below.

We next use the technique discussed above of introduc-
ing an auxiliary scalar field ’. The modified action is

~SS� 	gg��; �; ’;  m� �
1
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Z
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p
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 f0�’�g � Sm� 	gg��;  m�: (19)

As before the ’ equation of motion is
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’ � 	RR� 6� 	rr��2 � 6 	���; (20)

so the theories (18) and (19) are classically equivalent. We
next transform to the Einstein conformal frame g�� using
the relations (4) and (5). We also define the canonically
normalized version � of the field ’ by Eq. (6) as before,
and we use instead of the field � the quantity

� �
���
6

p
���’� � ��=�: (21)

The resulting action is
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where the potential V��� and coupling function ���� are
given by the same expressions (8) [or (11)] and (9) as
before.

We now address the issue of spurious solutions of the
equations of motion of the theory (22) that do not satisfy
the equations of motion of the original theory (12). We
show that the appropriate subclass of solutions of the
theory (22) are those solutions with � � const. To see
this, note that for solutions of the original theory (12), the
connection is compatible with the metric f0�R̂R� 	gg��, by
Eq. (14). Using Eqs. (20), (5), and (21) this metric can be
written as

f0�’� 	gg�� � e�2� 	gg�� � e�2��=
��
6

p

�e2� 	gg���: (23)

Comparing with the ansatz (17) shows that on shell we
must have � � const, as claimed. It is also possible to
show that this is the only restriction on solutions.

Therefore, the final action can be obtained simply by
deleting the field � from the action (22):

~SS�g��;�;  m� �
Z
d4x

�������
�g

p
�
R

2�2 � V���

�
� Sm�e2����g��;  m�: (24)

This action has exactly the same form as the scalar-tensor
form (7) of the standard-variation version of the theory,
except that the kinetic energy term for the field � has
been deleted. (Similar theories in which a scalar field is
nondynamical have been considered in attempts to avoid
cosmological singularities [14].)

The equations of motion of this formulation of the
theory are significantly simpler than those of the original
formulation. They are

1

�2
G�� � �V���g�� � e2���� 	TT��; (25)

and

V 0��� � �0���e4���� 	TT; (26)
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where 	TT�� � ��2=
�������
� 	gg

p
��Sm=� 	gg

�� is the Jordan-frame
stress-energy tensor and 	TT � 	gg�� 	TT��. Note that Eq. (26)
implies that � is an algebraic function of 	TT.

We next discuss the nature of the solutions of the
algebraic Eq. (26) for �. We restrict attention to the model
(11) of Carroll et al., and to the case of negative 	TT. We
define �c � �2=�2, which is a critical energy density of
order the present cosmological energy density. When
j 	TTj � �c, we have � � �max �

��������
3=2

p
ln�4=3�=� (where

�max is the value of � at the local maximum of the
potential), V��� � V��max� � 3

���
3

p
�c=16, and e2���� �

3=4. When j 	TTj � �c, on the other hand, the solution is
��� ��c=j 	TTj�2

��������
3=2

p
� 1, corresponding to V��� �

�2
c=j 	TTj and e2���� � 1. Thus, up to fractional corrections

of order �2
c=j 	TTj2, the equation of motion (25) reduces to

Einstein’s equation.
However, in terrestrial and astrophysical environ-

ments, these conclusions are valid only when the
stress-energy tensor 	TT�� is interpreted to be the true,
microscopic stress energy, and not the macroscopic, spa-
tially averaged stress-energy tensor.What this means is as
follows. The true, microscopic stress-energy tensor 	TT��
will vary over atomic scales in matter, from j 	TTj � �c
inside atoms, to j 	TTj � �c in between atoms. Let us write
	TT�� � h 	TT��i � � 	TT��, g�� � hg��i � �g��, where h 	TT��i
and hg��i are the spatial averages of the stress-energy
tensor and the metric over some length scale large com-
pared to atomic scales, and �T�� and �g�� are the
fluctuations due to the microscopic structure of matter.
For general relativity, we have �g�� � 1, and so the
fluctuations can be treated as a linear perturbation in
Einstein’s equation. This guarantees that Einstein’s equa-
tion continues to hold to a good approximation with 	TT��
replaced by h 	TT��i and with g�� replaced by hg��i.

However, this property does not hold for the theory
(24). If we write � � h�i � ��, then since the energy
density varies from scales � �c inside atoms to scales
��c in between, it follows that ��� is of order unity.
Hence, �� cannot be treated as a linear perturbation in
Eq. (25); for example, one cannot make the replacement
he2����i � e2��h�i�. Thus Eqs. (25) and (26) are not valid
with the fields 	TT��; g�� and � are all replaced by their
spatial averages. In particular, this invalidates the
Friedmann-Robertson-Walker cosmological models
obtained from Eqs. (25) and (26) [or equivalently
Eqs. (15) and (16)] with 	TT�� taken to be that of pressure-
less matter [5,8].

The strong dependence of solutions of the equations of
motion on the microphysical structure of matter suggests
that one should treat the matter source in terms of quan-
tum field theory. In this context, one can integrate out the
field � by solving its equation of motion and backsub-
stituting into the action (24). One then finds that addi-
tional interactions are generated among the various
matter fields of the standard model of particle physics
that are sufficiently large to be in severe violation of
experimental bounds.
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We illustrate this effect by taking the matter action to
be the Dirac action for free electrons:

Sm� 	gg��;�e� �
Z
d4x

�������
� 	gg

p
	��e�i 	���r� �me��e: (27)

Here �e is a Dirac spinor,me is the electron mass, and 	���
are the Dirac matrices associated with the metric 	gg��,
satisfying 	��� 	��� � 	��� 	��� � �2 	gg��. Substituting into
Eq. (24) gives for the total action

~SS�g��;�;�e� �
Z
d4x

�������
�g

p



�
R

2�2
� V��� � ie3���� 	��e�

�r��e

� e4����me
	��e�e

�
; (28)
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where �� � e�� 	��� are the Dirac matrices associated
with the Einstein-frame metric g��. The equation of
motion for � is V0��� � 3�0���e3����i 	��e��r��e �
4�0���e4����me

	��e�e. Solving this equation for � using
Eqs. (9) and (11) yields
�� � ��max �
1���
2

p M�

���
3

8

r
K�O�K2;M2;KM�;

(29)
where K and M are the dimensionless quantities K �
i�2 	��e�

�r��e=�
2, M � �2me

	��e�e=�
2. Substituting

the solution (29) back into the action (28) and rescaling
g�� ! �4=3�g�� gives
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��������p

where ~�� � 4=3�, m� �

����������
�=�

p
, and � � �2=�

���
3

p
�2� is

the induced cosmological constant.
The last three terms in the action (30) are corrections

to the standard model. These corrections are character-
ized by the mass scalem�, which is roughly the geometric
mean of the Planck and the Hubble scales, of order
10�3 eV. Since this energy scale is so small, it is clear
that the action (30) is in severe conflict with atomic
physics and particle physics experiments, for example,
electron-electron scattering. Thus the original gravitation
theory (12) is ruled out.

A simple physical explanation for this effect is the
following. Consider a region of space where the energy
density � is of order �c and which varies over a length
scale L � H�1

0 , where H0 is the Hubble scale. Then, the
corresponding Einstein-frame gravitational field will be
negligible, but the quantity e2� and the perturbation to
the Jordan-frame metric will be of order unity, from
Eq. (26). Therefore the gravitational acceleration experi-
enced by test particles will be �c2=L, of order the
gravitational acceleration produced by a black hole of
size �L near its horizon. Such gravitational accelerations
are significantly larger than in general relativity.
Although the theory (12) was designed to produce devia-
tions from general relativity only at very large length
scales ���1 �H�1

0 , in fact deviations from general rela-
tivity can be manifest at much smaller distance scales, as
long as the local radius of curvature of spacetime
�

������������������
c3=�G��

p
is of order ��1, and L � ��1. Since the

density scale �� �c can be achieved in the scattering of
sufficiently low energy elementary particles, such par-
ticles experience the nonconventional large gravitational
forces discussed above, and the particle scattering cross
sections are therefore affected.
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