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We propose a new approach to the Casimir effect based on classical ray optics. We define and compute
the contribution of classical optical paths to the Casimir force between rigid bodies. We reproduce the
standard result for parallel plates and agree over a wide range of parameters with a recent numerical
treatment of the sphere and plate with Dirichlet boundary conditions. Our approach improves upon the
proximity force approximation. It can be generalized easily to other geometries, other boundary
conditions, to the computation of Casimir energy densities, and to many other situations.
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Improvements in experimental methods have rekindled
efforts to compute Casimir forces for geometries beyond
the classic case of parallel plates [1,2]. No exact expres-
sions are known even for simple geometries such as two
spheres or a sphere and a plane. It is therefore interesting
to consider new ways of viewing the Casimir effect and
the approximation schemes that they motivate. In this
Letter we present a new approach based on classical ray
optics. Our approach avoids the infinities that have
plagued Casimir calculations. Like ray optics it is most
accurate at short wavelengths and where diffraction is not
important. Our basic result, see Eq. (6), is simple and easy
to implement. It coincides with the well-known proximity
force approximation (PFA) [3] close to the parallel plates
limit. Recently a precise numerical result has been ob-
tained for the Dirichlet Casimir energy of a sphere of
radius R separated from a plane by a distance a [4]. This
provides us an opportunity to test our approximation. The
results are shown in Fig. 1. They give us encouragement
that the optical approach may provide a useful tool for
estimating Casimir forces in situations where exact cal-
culations are not available.

We consider a scalar field of mass m satisfying the
wave equation, (—V? — k?)¢(x) = 0, in a domain D C
R3 bounded by disconnected surfaces, S, S,,..., on
which it obeys Dirichlet (or Neumann) boundary condi-
tions. At the end we comment on the generalization to
conducting boundary conditions for the electromagnetic
field. The Casimir energy can be written as an integral
over dp(k), the difference between the density of states in
D and the density of states in vacuum. This, in turn, can
be related to an integral over the Green’s function [5]
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where w(k) = \/c?k> + m*c*/h? and G = G — G, is the
difference between the Green’s function and the vacuum
Green’s function. We work in three dimensions although
the generalization of our results to other dimensions is
straightforward.
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We look for an approximate solution of the wave equa-
tion that becomes exact for infinite, planar surfaces. We
approximate the full propagator as a sum of terms ascrib-
able to different optical paths, satisfying the wave equa-
tion with an error of O(1/(kR)?) [6,7] where R is a typical
curvature of the surface (e.g., the radius of the sphere in
the sphere + plane situation). We are also neglecting
diffractive contributions, arising from the presence of
sharp boundaries, and we assume the absence of caustics
in the integration domain. We expect this to give an
excellent approximation for the Casimir energy when
kR is large (here « is the dominant wave number in the
Casimir energy integral, k ~ 1/a where a is the mini-
mum distance between the surfaces).

The optical contribution to G(x/, x, k) is given by the
sum over optical paths from x to x/, G(x/,x, k) —
Gopﬁcal(x’, x, k) =>,G,(x', x, k). These fall into classes
C,, which have n points on the boundaries [8]. The col-
lective index n = (n, ) identifies both the class C, and
the path «. These paths are stationary points in the class
C, of the functional integral representation of G. In three
dimensions the optical terms in G contribute
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FIG. 1 (color). Comparison of methods: Casimir energy for a
sphere and a plate as a function of ¢ = a/R. Numerical data
from Ref. [4] normalized to unity (stars with error bars); our
optical approximation (red triangles); plate based proximity
force approximation (PFA) (green diamonds); sphere based
PFA (blue squares).
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(in d # 3 Hankel funct10ns will appear in the analogous
expression [9]), where €,,(x, x) is the length of the optical
path n = (n, «) that starts from x and arrives at x’ after
reflecting n times from the boundary. These paths are the
minima of €,(x/, x), straight lines that reflect with equal
angles of incidence and reflection from the surfaces. The
factor (—1)" implements the Dirichlet boundary condi-
tion. For Neumann boundary conditions it is absent.
A, (¥, x) is the enlargement factor of classical ray optics
[7] (also equal to the VanVleck determinant as defined in
Ref. [9]) and is given by

An(x’, x) = 2 lim&~2e” f; dS[(l/RlH(l/Rz)], (3)
v —

where R ,(s) are the radii of curvature of the wave front
following the path and s is the coordinate along the path.
A measures the spread in area dA at the arrival point x” of
a pencil of rays having angular width d() at the starting
point x, following the classical path indexed by n. This is
reasonably easy to compute even for multiple specular
reflections on any curved surface.

The contribution of the optical path n to the Casimir
energy is obtained by substituting Eq. (2) into Eq. (1),

1)'M, / hkw(k)/ d>xJ A, (x) sink €, (x),
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where M, is the multiplicity of the nth path, and we have
defined A, (x) = A, (x, x) and €, (x) = €, (x, x) for brevity.
The minimum in the class C; (the direct path for x to x')
should be excluded to account for the subtraction of the
vacuum energy. In a given geometry the optical paths can
be indexed according to the number of reflections from
each surface. For example in a geometry consisting of
only two convex plates (S and S,) we have paths reflect-
ing once on S, or once on §,, paths reflecting 2 times
(once on S| and once on S,), and so on. The multiplicity of
even reflections paths is 2 (the path can be run in two
different directions), while that of odd reflectionsis 1. D,
is the domain over which the path n = (n, @) is possible.

&, given by Eq. (4) diverges if paths of arbitrary small
length occur. For domains bounded by convex plates
£,(x, x) = 0 can occur only for the first reflection, n =
1. To regulate this divergence we separate the initial and
final points by a distance €, so that €, = €. This is
equivalent to putting a cutoff on the frequency at k ~
1/€ [10,11]. Because it is confined in the first reflection,
the divergence will never contribute to the force between
surfaces. In practice it can be isolated and discarded. Next
we interchange the integrals over k and x in Eq. (4), and

perform the k integral
3
] d*x
w*h
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For a massless scalar we let m — 0 and we obtain our
fundamental result,

X
Soptical = Z( 1 nM [ d3 ggr(lj(c) (6)
which expresses the optical approximation to the Casimir
effect as a sum over geometric quantities alone.

Our method should not be confused with Gutzwiller’s
semiclassical approximation to the density of states
[12,13], nor with Balian’s and Bloch’s multiple reflection
expansion for Green’s function [10]. The latter expresses
the Green’s function in terms of surface integrals, not
limited to the optical paths. The former corresponds to
performing the integration over x in Eq. (4) by stationary
phase and selects only periodic paths. This approximation
fails badly when the radius of curvature R of the sur-
face(s) is large compared both to the separation a and the
width L of the surfaces. Our method applies also in
situations in which no periodic classical paths exist.

Parallel plates provide a simple, pedagogical example
which has many features —fast convergence, trivial
isolation of divergences, dominance of the even reflec-
tions — that occur in all the geometries we have ana-
lyzed. We assume for simplicity that the two plates have
the same area S. The relevant paths are shown in Fig. 2
where the points x and x/, which should coincide, are
separated for ease of viewing. For the even paths €5, (z) =
2na,n = 1,2,...,independent of z (here z is the distance
from the lower surface). For the odd paths €5, ,(z) =
2(n — 1)a + 2{, where { = z, a — z, respectively, if a =
down, up, n = 1,2,.... For planar boundaries the en-
largement factor is given by A, = 1/42.

The sum over even reflections,

fic & a 1 mhe
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772; [gd fo Gnat . 1aa0a 7

is trivial because it is independent of z. The result is the
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FIG. 2 (color online). (a) Optical paths for parallel plates.
Initial and final points have been separated for visibility;
(b) optical paths for plane + sphere. For n = 1 a reflection
off the sphere is shown; for n = 3 a reflection twice off the
sphere is shown.
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usual Dirichlet Casimir energy [2]. The sum over odd
reflections gives

hic > [a 1
Eotd=—> | dS d
odd 2772,/ r;)ﬁ “[€+ 2z + 2na)’ T
hc 2m7S
= 8
1672 € ®

This divergence can be related to that expected on the
basis of Ref. [10] and will be discussed in Ref. [17]. For
now it suffices that it is proportional to S, independent of
a, does not contribute to the Casmir force, and can be
ignored. The fact that the odd reflections sum to a diver-
gent constant is universal for geometries with planar
boundaries and to a good approximation is also valid
for curved boundaries. Notice that in this situation our
method coincides with the method of images [14]. This
will not occur for other examples. In Ref. [13] the
Casimir energy is approximated as a sum over periodic
classical paths [12]. In generic geometries the optical
paths are closed but not periodic and will provide a
much better approximation to the Casimir energy. The
approach of Ref. [13] yields Eq. (7) and coincides with the
optical approach in the case of parallel plates.

Note that the sum over n, Eq. (7), converges rapidly:
92% of the effect comes from the first term (the two
reflection path) and >98% comes from the two and four
reflection paths. This rapid convergence persists for all the
geometries we analyzed due to the rapid increase in the
length of the paths. Also notice that for m > 0 the two
reflection contribution gives a uniform approximation to
the a dependent part of the Casimir energy (accurate
from 92% for ma < 1 to exponentially small terms for
ma > 1): Elginie = E» = —(mM?c3/8a’>m*h)K,(2mca/ k).

The optical approach sheds light on the proximity force
approximation, which has been used for years to estimate
Casimir forces for geometries in which an exact calcu-
lation is unavailable [3]. For the Dirichlet problem and
two bodies S; and S, it takes the form:

mhe 1
1440 fs BranoF ®

where d;,(x) is the distance from S; to S, along the
normal to S| at x. The PFA is ambiguous because a
different result is obtained by interchanging surfaces S,
and S,. The PFA can be viewed as the sum over optical
paths if at each point x in D the path is chosen normal to
S|, and the small area element that intersects this path on
S, is replaced by a plane normal to the path. Then all
paths that bounce back and forth between these two
parallel surfaces are summed. Clearly the PFA misses
three important effects that are correctly included in
the optical approach: (i) the actual optical paths are
shorter; (ii) the surfaces are curved; and (iii) there are
optical paths through points that do not lie on straight
lines normal to one surface or the other. Effects (i) and
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5PFA(51) =

(ii1) increase and (ii) decreases for convex (increases for
concave) surfaces the optical estimate of the absolute
value of the Casimir energy relative to the PFA. In the
cases we have studied the net effect is to increase the
Casimir energy. In the subsequent discussions we com-
pare our results with the PFA approximations based on
either of the two surfaces. First, however, we propose an
“optimal” PFA motivated by the optical approach: at
each point in D choose the unique shortest path from
S, to S, (of length €,,). Replace both surfaces locally by
planes perpendicular to this path and sum all optical
contributions. The result,

_ mhc 3
1440 Jp

Eppar(S) = (10)

1
x[€l2(x)]4’

resolves the ambiguity in the PFA in favor of the shortest
paths. Of course, the sum over the actual optical paths
including the enlargement factor is more accurate still.

The only nontrivial geometry we know of for which we
can test our approximation is a sphere of radius R placed
at a distance a from an infinite plane. This has not been
solved analytically, but numerical results have been pub-
lished recently [4]. Defining & = a/R, we expect the
optical approximation to give an error of O(&?).
Certainly, when & = 1 diffraction dominates, the force
is given by Casimir and Polder [15], and our optical
approximation will fail. Our aim is to study the accuracy
of the optical approximation and the domain of its appli-
cability compared, for example, to the PFA.

We have calculated the Casimir energy for this con-
figuration including paths up to four reflections. Some
characteristic paths are shown in Fig. 2. The results
are plotted in Fig. 1. The C; and C; contributions can
be evaluated analytically. The divergent contribution
from C,; is independent of a and can be put aside. The
a-dependent, finite parts of £; and &5 are opposite in sign
and their sum is always small (<2%) compared to the &,.
&, and &, can be computed quickly with Mathematica.
The optical result agrees with the numerical result of
Ref. [4] within error bars (~1%) out to & = 0.1, where
the PFA fails badly. Even for £ = 1, on the border of its
range of validity, SE/Eyx = 25% where Ey is the numeri-
cal value given by Ref. [4] and 6E = Ex — E,p. In com-
parison, the “sphere based” PFA gives 6E/Eyx = 58%
and the “plate based” PFA SE/Eyx = 73%. (In response
to this paper, the authors of Ref. [13] compared their
semiclassical approximation with the numerical results
of Ref. [4] and found agreement comparable to ours [16].
This can be understood as a consequence of the fact that
the effective width of the sphere, L, scales like its ra-
dius R, and is not a general feature of the semiclassical
approach.)

The limiting case ¢ — 0 is that of two infinite parallel
plates. Here the optical approximation must agree ana-
lytically (and numerically) with PFA. The agreement is
clear in Fig. 1.
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FIG. 3 (color). Local contributions to the optical Casimir
energy for a plane and a sphere with a/R = 0.25. The scale

is linear in the hue from red (least) to violet (greatest). The
self-energy density given by C; has been subtracted.

Since the optical approximation gives the Casimir en-
ergy as a volume integral of a local contribution at each
point x, it is possible to get an idea of the domains that
give the dominant contributions to the Casimir force by
plotting the integrand in Eq. (6). As an example we show
a contour map of the integrand for the plate and sphere at
& = 0.25 in Fig. 3. The local Casimir energy density (and
other local observables) is defined by a differential op-
erator acting on the Greens function [11] and is not
identical to the integrand in Eq. (6). However, since the
form of the optical approximation to the Greens function
is so simple, it is straightforward to obtain a compact and
computable approximation to the local energy density
which would replace Fig. 3.

Our work suggests many possible extensions. We have
studied the application to a finite (rectangular) plane
inclined at an angle € to an infinite plane. This is the
geometry of a “Casimir torsion pendulum” [17].

The physically interesting case of conducting boundary
conditions can be realized by constructing a matrix Green
function for the vector potential. For parallel plates the
contribution of odd reflections integrates to O (for any a),
reflecting the well-known absence of a 1/€ divergence
for conducting boundary conditions [11]. The even reflec-
tions sum to obtain the expected result: g = 2Epirichiet-
The extension to more complicated geometries will be
presented in Ref. [17].

There are many interesting cases (both from a theo-
retical and an experimental point of view) in which
diffraction effects become important, especially in situ-
ations in which the objects are small compared to their
separation (transition between Casimir and van der Waals
forces). Diffraction effects are certainly well beyond the
PFA approach but can in principle be included in our
framework by using Keller’s [8] recipe for constructing
the diffracted rays contribution to the propagator and then
integrating over k to leave an x integral.

The Casimir integral over modes can be generalized to
give the partition function for a fluctuating field at finite
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temperature. The computation is straightforward and
gives the thermal properties of the Casimir force, assum-
ing that it remains reasonable to idealize the material by
boundary conditions throughout the range of tempera-
tures of interest [18].
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