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High Temperature Thermal Conductivity of Two-Leg Spin-1=2 Ladders
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Based on numerical simulations, a study of the high temperature, finite frequency, thermal
conductivity ��!� of spin-1=2 ladders is presented. The exact diagonalization and a novel Lanczos
technique are employed. The conductivity spectra, analyzed as a function of rung coupling, point to a
nondiverging dc limit but to an unconventional low frequency behavior. The results are discussed in
perspective with recent experiments indicating a significant magnetic contribution to the energy
transport in quasi-one-dimensional compounds.
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Introduction.—Recent experiments [1–5] convincingly
promoted magnetic excitations as a very efficient mecha-
nism for energy transport in quasi-one-dimensional ma-
terials. In particular, spin-1=2 Heisenberg chain and
ladder compounds (undoped or hole doped) have been
studied. In both systems, the observed highly anisotropic
thermal conductivity (comparable in magnitude to that of
metallic systems) was attributed to magnetic transport.

Theoretically, it has been noticed that in the one-
dimensional (1D) spin-1=2 Heisenberg model the energy
current commutes with the Hamiltonian and thus the
thermal conductivity is ballistic at all temperatures [6–
8]. This observation falls in line with a proposal of un-
conventional transport in 1D integrable systems [8].
Besides this rigorous result, the experimental develop-
ments motivated theoretical studies of the thermal con-
ductivity in other (e.g., frustrated, gapped) spin chain and
ladder Hamiltonians based on numerical simulations [9–
11] or low energy effective theories [12,13]. These works
focused on the thermal Drude weight Dth as a criterion of
ballistic transport [8,14,15], and they led to an active
discussion of whether nonintegrable systems also show
ideal thermal conductivity.

The key to obtaining reliable information by numerical
simulations is the study of large enough systems that
allow analysis of the scaling with lattice size. In this
work, we study the thermal conductivity within linear
response theory, first, at high temperatures where numeri-
cal simulations on finite systems are most reliable (the
characteristic thermal scattering length should be smaller
0031-9007=04=92(6)=067202(4)$22.50 
than the size of the lattice) and, second, by using a novel
technique based on the Lanczos method and the micro-
canonical ensemble (MCLM [16]). This method gives
access to fairly larger systems than those studied until
now by the exact diagonalization (ED) method.

The main issues of actual experimental and theoretical
interest that we address are (i) whether the thermal trans-
port is ballistic or diffusive, (ii) how the interchain cou-
pling affects the ideal thermal transport of the decoupled
(integrable) Heisenberg spin-1=2 chains, and (iii) the
order of magnitude of the magnetic contribution to the
thermal conductivity as a function of exchange couplings
and, in particular, how it compares with experimental
values in ladder compounds.

Hamiltonian and method.—The two-leg ladder
Hamiltonian is given by the q � 0 component of Hq,
the Fourier transform of the local energy density, which
we define as

Hq � J
X
l�1;L

�
eiq�l�1=2��S1;l�1 � S1;l � S2;l�1 � S2;l�

�
J?
J
eiqlS1;l � S2;l

�
: (1)

Sl are spin-1=2 operators at site l and, in the following, we
consider systems with periodic boundary conditions; we
take J � 1 as the unit of energy ( �h � kB � 1) and unit
lattice constants.

To study the thermal conductivity, we define the energy
current operator jE using the continuity equation for Hq
[17,18]. Extracting the long-wavelength transport limit,
@Hq=@t��iqjE for q! 0, we obtain
jE � J2i
X
l�1;L

fS1;l�1 � �S1;l � S1;l�1� � S2;l�1 � �S2;l � S2;l�1�g

�
J?
2J

fS1;l�1 � �S1;l � S2;l� � S2;l�1 � �S2;l � S1;l� � S2;l � �S1;l � S1;l�1� � S1;l � �S2;l � S2;l�1�g: (2)
Within linear response theory [19], the real part of the
thermal conductivity at frequency ! is given by

��!� � 2�Dth��!� � �reg�!�; (3)

with the regular part,
�reg�! > 0� �
�
!L

tanh

�
�!
2

�
=i

Z �1

0
dt eizthfjE�t�; jEgi;

(4)

�� � 1=T; z � !� i�� and the thermal Drude weight,
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FIG. 1. Thermal Drude weight for J? � 1 as a function
of temperature for systems with L rungs (ED evaluation).
Inset: Normalized Dth for �! 0 as a function of system size.
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Dth �
�2

2L

X
n;m

�n��m

pnjhnjjEjmij2: (5)

jni (�n) are the eigenstates (eigenvalues) and pn the
Boltzmann weights. For �! 0 we obtain the sum rule,

Z �1

�1
d!��!� �

��2

L
hjE2i � I; (6)

which suggests the analysis of 2�Dth=I in order to esti-
mate the contribution of ballistic transport.

In the following, we employ the ED method to study
Dth and ��!� for systems up to L � 9 rungs. For larger
systems, up to L � 14, we use the MCLM method. In both
cases we implement the translational symmetry that pro-
vides independent k Hamiltonian subspaces. In the
MCLM method [16], we replace the thermal average in
(4) by the expectation value over a single state j"i of
energy " that equals the canonical ensemble value of the
energy at the desired temperature [20], " � hHi. In most
cases, we present results for �! 0, where "� 0 due to
the symmetric spectrum of the Hamiltonian. Otherwise,
we determine " by extrapolation of thermal energies
evaluated using ED results.

The state j"i is constructed by employing a first
Lanczos procedure of about 1000 steps using as ‘‘effective
Hamiltonian’’ the operatorK � �H � "�2; in practice, for
large systems with dense spectra, the procedure cannot
fully converge. j"i, the ground state of K in the con-
structed Lanczos subspace, is characterized by a distri-
bution over the eigenstates jni of variance in energy of
O�0:01� that imposes a maximum ! resolution to the
spectra. Then, starting from jEj"i, a second Lanczos
procedure of about 4000 steps provides ��!� using the
continued fraction technique [21] (typically �� 0:01).
Thus, we effectively evaluate ��!� by

��!� �
�
!L

tanh

�
�!
2

�
��=�

�
h"jjE

1

z� �H� "�
jEj"i

� h"jjE
1

z� �H� "�
jEj"i

�
:

(7)

Note that, as the Lanczos procedures do not fully con-
verge, an eventual ��!�-peak contribution appears as a
broadened weight at very low frequencies [16].

Thermal conductivity.—The first step in characterizing
��!� is the evaluation of the Drude weight at finite T. If
Dth is finite then the transport is ballistic; if it vanishes,
the transport is normal provided the �dc � ��! ! 0�
limit exists. For a finite system Dth is always nonzero,
so it is crucial to examine its scaling as a function of size.
Exact results obtained by the ED method are shown in
Fig. 1. In the high temperature limit Dth=�2 rapidly
decreases, seemingly exponentially fast, with system
size (for each series of even or odd L). It already repre-
sents only a couple of percent of the sum rule for L � 9
rungs (inset). Of course, the size of the studied lattices is
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rather limited, but a vanishing Drude weight in the�! 0
limit is corroborated by the ��!� spectra shown below.

At lower temperatures, we find a nonmonotonic scaling
for even-rung systems. Note, however, that the change of
scaling behavior of Dth, from decreasing with increasing
L at high T to the opposite at low T, shifts to a lower
temperature as we consider larger systems (see also [11]).
We can then argue that over the whole temperature range
the Drude weight scales to zero as L! 1 (in agreement
with [10]). It would be unexpected if there is a transition
to a finite Dth below some critical temperature.

Next, we discuss the thermal conductivity as a function
of ! and L in an attempt to determine whether it repre-
sents normal transport (diffusive behavior exemplified by
a Lorentzian form), unconventional (e.g., power law at
low frequencies), or some other behavior that still implies
a finite dc conductivity. Furthermore, we study the de-
pendence on J? in order to find out the effect of inter-
chain coupling on the ballistic transport of decoupled
chains. For J? � 0, only the 2���!�Dth contribution
exists as �jE;H� � 0. In Fig. 2, we show a series of spectra
for different L, J? � 1, and �! 0. To illustrate the
applicability of the MCLM method, we compare a spec-
trum from a canonical ensemble ED study for L � 8
(weights smoothed with Lorentzians) with one obtained
by the MCLM averaged over all k symmetry subspaces
(in both cases � � 0:05). We find that the agreement is
fair and the broadened Drude ��!� peak is reproduced,
the apparent value at ! � 0 depending on �. We also
show the regular part from the ED evaluation indicating
that the presence of the Drude weight, which is fairly
large for L � 8, is limited to ! � 0:3.

Next, in order to examine the finite size scaling of
��!�, we present spectra for larger systems, L �
10; 12; 14 (� � 0:01). We notice that the statistical fluc-
tuations drastically decrease with increasing L, so that for
L � 14 it is sufficient to consider only one k subspace
(k � 0 is shown, the curves being practically indistin-
guishable for the other k subspaces). The reason is that the
067202-2



0 1 2 3 4 5
ω

0

1

2

κ(
ω

)/
β2

J⊥= 0.2
J⊥= 0.5
J⊥= 1.0
J⊥= 2.0

0 0.2 0.4 0.6 0.8 1
J⊥

0

2

4

6

8

10

κ dc
/ β

2

FIG. 3. Thermal conductivity for L � 14 rungs as a function
of J? for �! 0. Inset: dc limit.
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FIG. 2. Upper curves: Normalized thermal conductivity for
different L by the MCLM method (curves displaced for
clarity). Lower curves for L � 8: thick line, MCLM; thin
line, ��!�=I by ED; thin-dashed line, �reg�!�=I by ED.
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dimension of the Hilbert space increases by a factor �10
when increasing L by two rungs. For L � 14 it is O�3�
106� states in each k subspace and so it represents a fairly
dense spectrum at high energies (temperatures). Thus, in
the following, we show spectra constructed with only the
k � 0 subspace for L � 14 rungs.

Finally, we note that the spectra rapidly collapse to the
same curve. Noticeable deviations for L � 10 are limited
to the !� 0–0:3 range. The data apparently converge to a
��!� curve that (i) it is characterized by a finite �dc �
��! ! 0� value, (ii) it approaches the ! ! 0 limit with a
finite slope, (iii) it shows a change of curvature at!� 0:5
for all L, and (iv) its overall ! dependence does not
correspond to a Lorentzian or power law behavior; a
minimal description of ��!� is obtained by an e�j!j%

form [22].
Of course, the deduced !! 0 behavior is rather ten-

tative considering the limited size of the systems that we
are able to study. A finite L imposes a cutoff on the lowest
frequency behavior that can be reliably extracted. We
cannot exclude the emergence of a more conventional
form — with vanishing zero frequency slope — in the
range !� 0–0:2. The apparent finite slope might also
be due to the mixing, in the very low frequency spectrum,
of a remnant ��!�-Drude contribution that we expect to
disappear as L! 1 (see Fig. 1). In any case, a prominent
Drude peak is not observed.

Next, in Fig. 3, we show a series of spectra for L � 14
as a function of interchain coupling J? in the�! 0 limit
(in all cases the contribution of the Drude weight is
estimated to less than 10% of the sum rule). For J? <
1, first, the dc conductivity (inset) scales as �dc � 1=J2?;
second, ��!� correctly tends to a ��!� peak as J? ! 0
signaling the ballistic transport of decoupled chains;
third, the frequency range of finite weight extends up to
!� 4J?. For J? > 1, a second weak peak appears at
!� 2J? (corresponding to the energy of singlet-triplet
rung excitations) and �dc � J? as now J? becomes now
the dominant energy scale. Notice that, for J? < 1, the
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overall behavior of ��!� is what one would qualitatively
expect by taking into account within a perturbative
scheme the effect of interchain coupling on the ballistic
transport of a noninteracting system. In this case, how-
ever, the ‘‘free’’ limit is the spin-1=2 Heisenberg Hamil-
tonian which implies that the effect of a perturbation on
the ideal transport of an integrable system is described
within a simple picture.

In Fig. 4, we show the frequency dependence of the
thermal conductivity at lower temperatures. An overall
similar behavior as for �! 0 is found except that the
rounding at !� 0:5 disappears for T � 1. The data are
qualitatively described by two separate exponential
forms, one in the frequency range !� 0–0:7 and another
one above. No excessive enhancement of the dc conduc-
tivity is observed. The sum rule (6) is now satisfied to
about 95% and the L dependence of the conductivity
spectra remains within the statistical noise of the data.
It is rather difficult to study even lower temperatures as
the energy spectrum is very sparse at low energies, and
thus the fluctuations significantly increase.

From the extracted dependence of �dc on J?, we can
estimate an experimentally relevant —�exp

dc — magnetic
contribution to the thermal conductivity at high tempera-
tures. Reinserting units in the basic expression (4), �exp

dc is
given by

�exp
dc �

kB
abc

�
J2c
�h

�
2
�
�h
J

�
1

J2
�dc

�
�J;

�h
J
!
�
: (8)

a; b; c are lattice constants (c along the ladder axis) and
energies are in degrees K. For characteristic lattice con-
stants of O�10 �A� and J�O�1000 K), we obtain a ther-
mal conductivity O�2 W=mK� that scales as ��J�2 and
�J=J?�

2 for T � J. If we assume an exponential increase
of the conductivity (due to the freezing of Umklapp
processes) with characteristic energy J�� J?� below a
temperature of O�J�, we obtain a room temperature ther-
mal conductivity of order 10–100 W=mK that is consis-
tent with experiment. We should keep in mind in this
estimation that it is notoriously difficult [23] to establish
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FIG. 4. Thermal conductivity for L � 14 at T � 1,
T � 2 �� � 0:5�, and for comparison at �! 0.
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the temperature dependence of the thermal conductivity
for T � J.

We can then argue that the experimentally observed
high values of the thermal conductivity [1,3] in ladder
compounds are due to the large exchange coupling J and
that they are limited by spin-spin as well as spin-phonon
scattering. This is in contrast to quasi-1D materials de-
scribed by the Heisenberg spin-1=2 Hamiltonian [2,5],
where it is unambiguous that the spin-spin scattering is
absent.

Discussion.—The presented numerical study indicates
that, at least in the high temperature limit, the thermal
conductivity in two-leg spin-1=2 ladders is characterized
by a finite dc value and thus nonballistic transport. The
low frequency spectra do not seem consistent with a
Lorentzian form. At lower temperatures there is a change
in behavior but not a dramatic enhancement of the dc
conductivity or the appearance of a prominent Drude
peak. Presently, with the available numerical methods,
it is rather challenging to explore an eventual crossover to
a quasiballistic regime at low temperatures.

Furthermore, this analysis exemplifies the effect of a
nonintegrable interaction (interchain coupling) on the
ballistic transport of an integrable system. The obtained
perturbative result indicates that the presence in a
Hamiltonian of an integrable case with diverging con-
ductivity is signaled over a finite range in interaction
parameter space.

Regarding experimental realizations, this study is
more relevant to ladder compounds with J smaller than
the room temperature, but it shows that materials with
high thermal conductivities can be obtained by increasing
the coupling J and/or reducing the interchain coupling
J?. It also shows that it would be interesting to explore the
unusual frequency dependence, for instance, by light
scattering. As to the observability of the exceptional
transport in integrable systems, we expect the effect to
be most remarkable at high temperatures in small ex-
change coupling J one-dimensional spin-1=2 Heisenberg
systems.
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