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Weak to Strong Pinning Crossover
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Material defects in hard type II superconductors pin the flux lines and thus establish the dissipation-
free current transport in the presence of a finite magnetic field. Depending on the density and pinning
force of the defects and the vortex density, pinning is either weak collective or strong. We analyze the
weak to strong pinning crossover of vortex matter in disordered superconductors and discuss the peak
effect appearing naturally in this context.
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FIG. 1. Pinning diagram delineating the various pinning
regimes involving collective versus individual pinning and
1D-line versus 3D-bulk pinning (fLab denotes the Labusch
force): 3D wcp, bulk weak collective pinning; 1D cp, collective
induces plastic deformations in the vortex lattice [6–8]),
line pinning; 1D sp, strong line pinning; 3D sp, bulk strong
pinning. Lines refer to crossovers.
Pinning of vortices by material defects is crucial in
establishing the defining property of a superconductor, its
ability to transport electrical current without dissipation.
Collective pinning theory [1], describing the concerted
action of many weak pins on the vortex system, is playing
a central role in our understanding of this complex sta-
tistical mechanics problem [2]. On the other hand, first
attempts describing flux pinning go back to Labusch [3],
who described the interaction between vortices and strong
pinning centers which introduce large (plastic) deforma-
tions in the vortex system. In this Letter, we describe how
these two theories relate to one another; given the density
np and force fp of pinning centers, as well as the vortex
density nv � 1=a20, we identify the regimes where indi-
vidual vortex lines and the bulk vortex lattice are pinned
by the collective action of many weak pins or by the
independent action of strong pins; see Fig. 1. We naturally
recover the peak effect [4] described in the work of
Larkin and Ovchinnikov [1] and establish its formal
relation to the Landau theory of phase transitions.

In a type II superconductor, the field (B) induced
vortices subject to a current flow j experience the
Lorentz force density FL � j ^B=c, and the resulting
vortex motion leads to dissipation. The superconducting
response is resurrected through material inhomogeneities
pinning the vortices at energetically favorable locations.
The pinning force density Fpin defines a critical current
density jc � cFpin=B below which the current can flow
free of dissipation. Usually, this critical current density is
considerably reduced with respect to the depairing cur-
rent density j0 � c"0=	0
; here, 	0 � hc=2e is the flux
unit, "0 � �	0=4��

2 is the (line) energy scale, and �
and 
 denote the penetration depth and coherence length,
respectively. Below, we focus on the most generic situ-
ation of isotropic superconductors and ignore effects due
to thermal fluctuations.

When pinning is strong [1,3,5] defects act individually
and the pinning force density Fp is linear in the density
np and average pinning force hfpini of defects. The
classic arguments characterizing strong pinning go back
to Labusch [3]; see also [1,5]. A strong pinning defect
0031-9007=04=92(6)=067009(4)$22.50 
and the energy landscape epin�R� becomes multivalued in
the vortex position R; see Fig. 2. The averaging over
defect locations then has to account for the preparation
of the system. We concentrate on the critical current
density and, thus, search for the force against drag; the
vortex position then is parametrized through the two-
component drag parameter Rd fixing the position of the
unperturbed lattice with respect to the defect. Dragging
the system along the x direction, we express the drag
force �@xepin�x; y� integrated along x through the jump
�epin�y� > 0 in the pinning energy and average over
‘‘impact parameters’’ y,

hfpini � �
Z Lx

0
dx

Z Ly

0
dy
@xepin�x; y�

LxLy
� �

Z a0

0
dy

�epin�y�

a0~aa�y�
;

where ~aa denotes the distance between periodic jumps [9].
For moderately strong pins with deformations not exceed-
ing the lattice constant, we have ~aa 	 a0, and assuming a
maximal transverse trapping distance t? along the y axis
2004 The American Physical Society 067009-1
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FIG. 2. Energy landscape epin and pinning force fpin versus
displacement Rd of the vortex lattice relative to the defect; for
weak pinning these are single-valued functions in Rd (dashed
lines), while strong pinning produces plastic deformations and
renders epin, fpin multivalued (solid lines; dotted lines indicate
unstable branches). Bottom right: Trapping geometry (top
view) for a circularly symmetric situation.
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we obtain the mean pinning force

hfpini 	 �
t?
a20

�epin�0� 	 �
t?tk
a20

fp 	 �
Strap
a20

fp; (1)

with the jump �epin�0� 	 tkfp expressed via the typical
impurity force fp and the bistability range tk of epin�x; 0�;
the product t?tk defines the trapping area Strap associated
with the strong pin [7]. The low impurity concentration np
implies noninterfering defects, and we obtain a critical
current density jc � �cnphfpini=B linear in np,

jc 	 �c=B�nefffp 	 j0�np
Strap fp="0; (2)

with the effective impurity density neff � np�Strap=a
2
0�.

In order to derive a quantitative criterion for the ap-
pearance of strong pinning, we consider a single defect at
the origin with a pinning potential ep�r�. Such a defect
acts on the vortex system to produce a pinning energy
density Ep�r;u� �

P
�ep�r��

2�R�R� � u�R�; z��, with
vortices positioned at R� � u�R�; z�, R� the equilibrium
positions and u the displacement field. The latter follows
from the solution of the implicit equation [r� � �R�; z�]

u��r�� �
Z
d3r0G� �r� � r0���@u Ep�r0;u0�

�
X
�0

Z
dz0G� �r� � r0��fp; �R0

� � u�r0��; z0�

� G� �R� �Rd; 0�fp; �Rd � u�Rd; 0�; 0�; (3)

with G� �r� the elastic Green’s function and fp �
�ruep�u� the pinning force of the defect. In the last
equation we have assumed a moderately strong pinning
potential (pinning one vortex at most) of range much
smaller than the lattice constant a0 and have chosen Rd

as the distance to the vortex closest to the defect [10].
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Evaluating (3) for r� � �Rd; 0�, we arrive at the self-
consistency equation [note that G� �r � 0� is diagonal]

u �R; 0� 	 �CC�1fp�R� u�R; 0�; 0�; (4)

with the effective elastic constant �CC�1 �
R
d3k=

�2�3Gxx�k�. For weak pinning the displacement u is
small and the solution u�R; 0� 	 fp�R�= �CC is unique.
Strong pinning, however, produces multivalued functions
u�R; 0� and epin�R�; cf. Fig. 2. The solution of (4)
turns multivalued as the displacement collapses when
@Ru! 1. Assuming a defect symmetric in the plane,
ep�R; z� � ep�R; z�, and dragging the lattice through the
defect center along the x axis, we find u0 � f0p�x� u�
� �CC� f0p�x� u��1 (note that x > 0 implies u < 0) and
arrive at the (Labusch) criterion [3] in the form

@xfp � �@2xep � �CC; (5)

hence, in order to produce strong pinning the (negative)
curvature of the pinning energy ep has to overcompensate
the lattice elasticity (the Labusch criterion involves the
maximal negative curvature above the inflection point).
Note that the Labusch criterion tests an individual pin-
ning center and classifies it as a weak or a strong one.

When pinning is weak, the elastic forces dominate over
the pinning forces and the defects compete; we then are
faced with the problem of the statistical summation of
individual pinning forces. For weak pins the average
hfpini vanishes and pinning is due to fluctuations in the
pinning force density: the forces of the competing pins
(with pinning force fp, density np, and extension rp � 
)
add up randomly and produce the pinning energy

hE2
pin�V�i

1=2 	 �f2pnp�
=a0�
2V1=2
; (6)

only vortex cores are pinned by the disorder, hence, the
factor �
=a0�2. Within weak collective pinning theory the
sublinear growth of hE2

pin�V�i
1=2 with volume turns linear

when the displacement u increases beyond the scale 
 of
the pinning potential, thus defining the collective pinning
volume Vc. Each volume of size Vc is pinned indepen-
dently with a pinning energy Uc � hE2

pin�Vc�i
1=2, and we

obtain a proper pinning force density

Fpin �Uc=Vcrp � �f2pnp�
=a0�2=Vc1=2; (7)

balancing this pinning force density against the Lorentz
force density jB=c, we find a finite critical current density
jc � cFpin=B. The remaining task is the determination of
the collective pinning volume Vc; its calculation is com-
plicated by the dispersion and anisotropy of the vortex
lattice —see below and Ref. [2] for a detailed discussion.

It is instructive to compare the weak and strong pin-
ning schemes and their dependence on dimensionality,
particularly in the limit of a small defect density np (in
the following, we assume pinning sites characterized by
their force fp and extension 
). An isolated vortex
line (1D) is always subject to strong pinning forces as
the effective elastic coefficient �CC vanishes due to the
067009-2
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diverging integral. At the same time, the deformation of
the line due to the pins is large, and we cannot ignore
their mutual competition. Comparing the elastic energy
"0
2=Lc and the pinning energy Uc � �f2pnpLc
2�1=2
,
we find the collective pinning length Lc � �"20=f

2
pnp�1=3

and a critical current density

jc � j0�np
3f2p="20�
2=3: (8)

This result is valid as long as many pins compete within
the volume 
2Lc; the condition np
2Lc > 1 defines the
lower limit �nn1D � fp="0


3 < np where the critical current
density assumes the value �jjc � j0�fp="0�

2.
For small densities np < �nn1D the pins acts individually,

and we determine jc from the force balance �	0=c�jclu�
�epin � fpu, with u� tk the displacement directed along
the force. The displacement u and the length l between
two subsequent pins fixing the vortex derives from an
analysis of the pinned vortex geometry; see Fig. 1, inset:
integrating the force equation "0@2zu � f�z� [with f�z� the
force per unit length acting on the line] over one pinning
center, we find the distortion angle ) � @zu� u=l�
fp="0 [11]. A vortex segment of length l deformed by
the angle ) in the direction of the driving force encoun-
ters )l2
np defects (with the trapping length t? � 
).
At the distance l, this number is unity; hence, l�
�"0=fpnp
�

1=2, and we obtain the critical current density

jc � j0�np

3f3p="

3
0�

1=2: (9)

At the crossover density �nn1D � fp="0

3 the critical cur-

rent density matches up with the weak pinning result;
also, the displacement u� lfp="0 is of order 
 at the
crossover density �nn1D and, hence, matches the displace-
ment field relevant in the collective pinning scenario.
Note that collective pinning (8) dominates over the strong
pinning (9) at large densities np > �nn1D.

For the vortex lattice (3D bulk pinning, and we assume
a0 < �) the Labusch criterion (5) offers a distinction
between weak and strong pinning centers; using the
Green’s function for the vortex lattice (see, e.g., [2]) we
find �CC� "0=a0. According to (5) a pinning center
changes from weak to strong at fp � fLab � "0
=a0. We
first review the weak pinning situation with fp < fLab
(where necessary, we encode quantities in this regime
with a superscript ‘‘<’’). The determination of the aniso-
tropic collective pinning volume Vc � R2

cL
b
c has to ac-

count for the dispersion in the tilt modulus at
intermediate scales a0 <Rc < � [2], producing the re-
sults

jc � j0

2

a20

�
a0
Lc

�
�
e�2c�Lc=a03 ; Rc < �; (10)

jc � j0

2

�2

�
a0
Lc

�
6
; Rc > �; (11)

we have made use of the single vortex pinning parameter
Lc=a0 � �f2Lab=f

2
pa0


2np�
1=3. The numericals c and � fol-
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low from a two-loop renormalization group analysis
[12,13]. These results are valid as long as many (compet-
ing) pins are active in the volume Vc, np�
2=a20�Vc > 1.
For fp < fLab this condition is violated in the large np
limit. However, with increasing pinning density np, the
collective pinning radius Rc decreases, first below � at
�nn� � f2Lab=f

2
pa0


2 ln��=a0� delineating the dispersive re-
gime, and then below a0 at �nn<a0 � f2Lab=f

2
pa0


2 where the
condition np�
2=a20�Vc > 1 is still fulfilled. At the cross-
over density �nn<a0 the 3D weak collective pinning crosses
over to the 1D weak collective pinning result (8).

Turning to strong pinning fp > fLab (encoded with a
superscript ‘‘>’’) we start at high densities; as the
Labusch criterion is not effective in 1D, the system re-
mains collectively pinned for np > �nn1D and crosses over
to 1D strong pinning as np drops below �nn1D. Decreasing
np further, the pinning distance l� a0��fLab=fp�=
npa0


21=2 increases beyond a0 as np decreases below
�nn>a0 � �fLab=fp�=a0
2 and the system enters the 3D strong
pinning regime; see Fig. 1. The calculation of the mean
pinning force density Fpin � nphfpini proceeds along the
lines discussed above and involves the trapping area
Strap � t?tk with t? � 
 and tk � u� fp= �CC; we obtain
the force density Fpin � np�
=a0�f2p="0 and a critical
current density

jc � j0a0
2np
f2p
"20

� j0

2

a20
npa0
2

f2p
f2Lab

: (12)

The bulk strong pinning result (12) smoothly transforms
into the 1D expression (9) at �nn>a0 where l� a0. On the
contrary, the strong pinning expression (12) does not
match up with the bulk weak collective pinning results
(10) and (11) at fp � fLab (we concentrate on low impu-
rity densities with npa0
2 < 1; cf. Fig. 1). However, we
have to keep in mind that our rough derivation of the
strong pinning result (12) breaks down on approaching
the critical force fLab. Indeed, since the displacement field
u�r� turns single valued below fLab, strong pinning van-
ishes altogether [with a power �fp � fLab2; see (15)], and
pinning survives only in the form of weak collective
pinning due to fluctuations in the impurity density.
Within the approximative scheme adopted here, the sharp
rise of the critical current density at fp > fLab is encoded
in a jump jcjsp=jcjwcp � ��2=a20�=npa0


2 > 1 for np < �nn�
(�exp�2c=npa0
2 for np > �nn�).

The crossover from strong to weak pinning at the
Labusch condition (5) can be analyzed within a Landau
type expansion: We define the free energy functional
epin�u;Rd� � �CCu2=2� ep�Rd � u� from which the self-
consistency equation (4) follows by variation. Note that
the derivative �@xepin � fp;x�Rd � u� provides the force
along x acting on a vortex separated from the defect by
Rd and deformed by u; cf. Fig. 1. It is this force which has
to be averaged over in the definition of hfpini.

We first concentrate on the trajectory Rd � �x; 0� with
u � �u; 0�. The curvature e00p �u� relevant in (5) assumes a
maximal negative value; we denote the corresponding
067009-3
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location and value by u* and �*, respectively. Next, we
expand the curvature around u*, e00p �u� 	 �*� ��u�
u*�2=2; integrating in u and combining with the elastic
term �CCu2=2, we arrive at the expansion

epin�u; x 	 �CCu2=2�� �x� u� u*� � *�x� u� u*�
2=2

� ��x� u� u*�
4=24: (13)

This pinning energy maps to the free energy emag�+; h �
,+2=2� �+4=24� h+ of a one-component magnet in a
magnetic field [14] if we define the ‘‘order parameter’’
+ � x� u� u*, the ‘‘temperature difference’’ , � �CC�
*, and the ‘‘magnetic field’’ h � �CC�x� u* � �= �CC�. The
‘‘high-temperature’’ phase , > 0 describing the para-
magnet corresponds to weak pinning, while the two
ferromagnetic phases at ‘‘low temperatures’’ , < 0 stand
for the pinned (+< 0) and unpinned (+ > 0) states; the
transition between these states is discontinuous and the
associated coexistence regime extends over the ‘‘field’’
domain jhj< h� � �2=3 �CC�

���������
2=�

p
j,j3=2. At h� the trapping

or detrapping of the vortex from the defect produces
jumps �+ � 3

���������
2=�

p
j,j1=2 in the ‘‘order parameter,’’ lead-

ing to jumps �e � �epin=2 � �9=2��,2 in the energy.
For finite ‘‘impact parameters’’ y we have to determine

the trapping distance t?. Assuming rotational symmetry,
the bistable regime is bounded by a circle of radius R �
x� � u* � �= �CC and, hence, t? 	 2x� (note that at , � 0
we have h� � 0 but the critical drag parameter x� does not
vanish). The (uncompensated) trapping area determining
the average pinning force hfpini is shown in Fig. 2; com-
bining the above results for the jump in pinning energy
and the transverse trapping distance, we find the averaged
pinning force [cf. (1)]

hfpini 	 18�u* � �= �CC�� �CC� *2=�a20: (14)

Defining the individual force of (equal) pinning centers
via fp � maxu�@ufp�u�
 � *
 (then fLab � �CC
), we can
translate (14) into an expression for the critical current
density jc extending the strong pinning result (12) to the
vicinity of the Labusch point,

jc � j0 �

2=a20�npa0


2 �fp=fLab � 12: (15)

Comparing with the weak pinning result (11), we note a
sharp rise in the critical current density jc once the strong
pinning force overcomes the weak pinning result [1].With
the small parameter � � �a0=���npa0
2�1=2 < 1, this
crossover appears above but still close to the Labusch
point as fLab / �CC decreases below fp=�1� ��.

Another remarkable result is the interpretation of the
collective pinning scenario in terms of the strong pinning
picture; indeed, summing over competing pins within the
collective pinning volume Vc produces the corresponding
critical Labusch force. Quantitatively, we compare the
force gradient f0 � �np�
2=a20�V

1=2fp=
 accumulated
within the (anisotropic) volume V � LR2 � ��=a0�R3

with the elastic parameter �CC�R� � "0�R=a
3
0 for smooth

distortions on the scale R > � (nondispersive regime) and
067009-4
apply the Labusch criterion (5). We then find the scale
Rc � �f2Lab=f

2
pnpa0


2, where the accumulated pinning
force overcompensates the elastic force; this length agrees
with the 3D collective pinning length in the nondispersive
regime [2]. The resulting bistable solutions are the signa-
ture of the alternative pinning valleys which the collec-
tive pinning volume can select beyond the scale Rc.

The above discussion sheds light on the general concept
of pinning. Pinning is absent in the rigid limit. A finite
but large elasticity (with fLab > fp) allows for only weak
deformations, and individual pins cannot hold the lattice
as the averaging over individual pinning forces produces
a null result. Hence, pinning is due only to fluctuations in
the pinning forces and thus collective. Reducing the
elasticity, strong pinning defects appear when fLab drops
below fp; they pin the lattice individually and strong
pinning, linear in the defect density np, outperforms
collective pinning. The important role played by the
curvature e00p < 0 in the pinning potential is an interesting
topic for numerical studies. The crossover between weak
collective and strong pinning can be realized in experi-
ments: increasing the magnetic field towards its critical
value Hc2 leads to a marked softening of the elastic
moduli. The reduction in the elastic moduli entails a
decrease of the Labusch force fLab and triggers the cross-
over from weak to strong pinning, producing the well
known peak effect in the critical current density [1,4].
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