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Kinetic eigenmodes of plasma oscillations in a weakly collisional plasma, described by a collision
operator of the Fokker-Planck type, are obtained in closed form for initial-value as well as for
boundary-value problems. These eigenmodes, which are smooth and compose a complete discrete
spectrum, play the same role for weakly collisional plasmas as the Case–Van Kampen modes do for
collisionless plasmas.
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Our demonstration of the completeness of the kinetic
eigenmodes of a collisional plasma raises possible ques- @x

� �4�e
�1
dvf�x; t; v�: (2)
Landau damping of plasma oscillations in a collision-
less plasma is one of the most fundamental and widely
used concepts in plasma physics [1]. It is well known that
Landau-damped solutions are not true eigenmodes. The
true eigenmodes for a collisionless plasma were obtained
by Van Kampen [2] and Case [3]. The Case–Van Kampen
eigenmodes exist for every given real frequency (!) and
wave number (k) and, thus, constitute a continuous spec-
trum. Although the Case–Van Kampen eigenmodes are
singular in functional form, they have been shown to
obey classical orthogonality and completeness theorems
[2,3]. In most situations of physical interest where the
initial conditions are smooth, a broad and continuous
spectrum of Case–Van Kampen modes is excited. The
Landau-damped solutions emerge, in the long-time limit,
as remnants due to phase mixing of the spectrum of
singular eigenmodes.

How is this widely accepted physical picture of Landau
damping modified if collisions are introduced? Lenard
and Bernstein (LB) [4] considered the problem using an
operator of the Fokker-Planck type [5]. They obtained an
exact analytic solution with a dispersion relation that has
a root that formally reduces to a Landau root in the limit
of zero collisions. However, they did not discuss the
nature of the spectrum or address the issue of complete-
ness of the eigenmodes.

The main objectives of this Letter are to give a theo-
retical formulation that yields these eigenmodes for both
initial-value and boundary-value problems and to dem-
onstrate rigorously that they form a complete set. Unlike
the Case–Van Kampen eigenmodes, the complete kinetic
eigenmodes of the collisional problem are smooth and
constitute a discrete spectrum [6,7]. The Landau-damped
solutions emerge as true eigenmodes of the weakly colli-
sional theory in the limit of zero collision [7].
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tions about some classical treatments, now described in
textbooks [8]. Su and Oberman (SO) [9] (also [10] and,
recently, [11]) claimed that plasma wave echoes [12–14]
(and the ballistic response), which owe their existence to
the intrinsic time reversibility of the Vlasov equation,
should decay very rapidly due to the presence of colli-
sions. Specifically, using the LB collision operator, they
predicted that spatial echoes should decay as exp����=
!p�

3
D�x

3� and temporal echoes as exp���!2
pt

3�, where �
is the collision frequency, !p is the plasma frequency,
and �D is the Debye length. Thus, SO raised the concern
that ‘‘. . .the collisional damping of the free-streaming
motion can be quite important in certain circumstances
so as to make it impossible for the generation of plasma
echoes to occur’’ [9]. Our proof of the completeness of
collisional eigenmodes implies that the SO solution, if it
exists (or is realized as a transient response), must be a
result of the superposition of these eigenmodes. The
predictions of our theory are qualitatively consistent
with recent experiments involving a weakly collisional
stable plasma in which the measured decay rate for the
least damped electrostatic ion perturbations was found to
be substantially weaker and scaled quite differently than
predicted by the SO theory [6].

We build on the foundation of our previous work [7].We
assume that the ion distribution is unperturbed and focus
on electrostatic electron perturbations. We begin with the
one-dimensional linearized equations for the first order
electron distribution function f�x; t; v�, coupled with the
self-consistent Coulomb’s law for the electric field:
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The collision frequency � is a constant, and �e, m, and
v0 are, respectively, the charge, mass, and thermal speed
of the electron. The function f0 is the equilibrium
Maxwellian distribution. The right-hand side of Eq. (1)
is the linearized collision operator used in [4].

For eigenmode solutions, we consider the form
f�x; t; v� � ~ff�k;!; v� exp�i�kx�!t��. We give a unified
treatment for two types of problems: (a) the temporal
evolution problem, for which k is real and ! is complex,
and (b) the spatial evolution problem, for which ! is real
and k is complex. We define a slightly different set of
dimensionless variables in cases (a) and (b). In the fol-
lowing, all equation numbers with a subscript (a) are for
case (a) and a subscript (b) are for case (b). Combining
Eqs. (1) and (2), we obtain
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where � 

���
2

p
kv0=!, and we redefine � 
 2!2

p=!
2,� 


�=!, keeping all other definitions the same as for case (i).
In [7], eigenfunctions and eigenvalues in Eqs. (3a) and
(3b) are found numerically, using an expansion in
Hermite polynomials, with coefficients found by solving
a novel recurrence relation. It is found that the eigenvalues
are discrete, unlike the Case–Van Kampen continuous
spectrum [2,3]. As the collision frequency tends to zero
(that is, �! 0), a subset of these eigenvalues tend to
the Landau roots determined by the well-known disper-
sion relation 1� ��1��Z���� � 0, or 1� ��1�
Z�1=��=��=�2 � 0, where Z is the plasma dispersion
function. However, there are additional roots which tend
to values given by � � �i�n�� 1=�2��� or �2 �
2�i�� n�2�, where n is a non-negative integer,
which correspond to the locations of the poles of the
dispersion function. Hereafter, we refer to these poles as
the LB poles.
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A closed form of the eigenfunctions and the dispersion
relations can be obtained by solving Eqs. (3a) and (3b) in
the Fourier u space [4,7,11], with solutions
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where ~ggn�w� �
R
1
�1 gn�u�e

iwudu=
�������
2�

p
and we choose

~ggn�0� � 1. Define D�w;�n� 
 1� ~ggn�w� or D�w; �n� 

1� ~ggn�w�. Then the eigenvalues satisfy the dispersion
relations D��n� 
 D�0;�n� � 0 or D��n� 
 D�0; �n� �
0. In these equations, d�a; x� 
 x�aex��a; x� is a single-
valued analytic function in the complex a and x planes,
except at the simple LB poles when a is a nonpositive
integer. [Here ��a; x� 


R
x
0 e

�tta�1dt is the incomplete
gamma function.] From Eq. (3a), we see that if �n is
an eigenvalue, so is ��


n, with the corresponding eigen-
function g
n��u�. Note also that Im��n�< 0 for all n, that
is, all the roots are damped. Similarly, if �n is an eigen-
value, so is ��n, with corresponding eigenfunction
gn��u�. Note that �nr�ni > 0 for all n, where �nr �
Re��n�, �ni � Im��n�.

In order to investigate the completeness of these eigen-
modes, it is necessary to obtain the solutions to the
adjoint equations for Eqs. (3a) and (3b). These adjoint
equations are
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where In 

R
1
�1 ��u�Gn�u�du. By direct substitution, us-

ing the relation
R
1
�1 gn�u�du � ��1

n

R
1
�1 ugn�u�du orR

1
�1 gn�u�du � �n

R
1
�1 ugn�u�du, it can be shown easily

that Gn�u� / gn�u� exp�u2� � �
R
1
�1 gn�u

0�du0=�1=2 for
the temporal problem and Gn�u� / gn�u� exp�u2� for the
spatial problem. This shows directly that the eigenvalues
of Eqs. (5a) and (5b) are identical to those of Eqs. (3a) and
(3b). However, to obtain closed-form expressions for the
eigenfunctions, we still need the solutions in Fourier u
space,
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where ��x� is the Heaviside step function such that �0�x� � %�x�. [The step function ��x� can be analytically continued
for complex arguments.] Solutions given by Eqs. (6a) and (6b) exist only if �n; �n satisfy the dispersion relations.
Noting that the eigenvalues for the adjoint equations are the same as those of the original equations, it is easy to prove
the following orthogonality relations:
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��m ��n�
Z 1

�1
gm�u�Gn�u�du � 0; (7a)

��m � �n�
Z 1

�1
ugm�u�Gn�u�du � 0: (7b)

We can now fix the coefficients of the eigenfunctions in
Eqs. (6a) and (6b) by the usual orthonormality require-
ment; that is, we require that the integrals in Eqs. (7a) and
(7b) become unity when m � n. Now, if completeness is
assumed, it follows that for an initial-value problem with
an arbitrary initial condition g�u� (subjected to suitable
smoothness and boundedness conditions), the solution to
Eqs. (1) and (2) [or equivalently, Eq. (3a) with � !
i@=@t] is given by g�u; t� �

P
ncngn�u� exp��i�nt���t�,

where we have omitted the exp�ix� factor. Similarly, the
solution for the boundary-value problem with a sinusoidal
driving electric field of the form Eext � "e%�x�, such that
@�E�x� � Eext�=@x � �

R
1
�1 gdu, is given by g�u; x� �P

ncngn�u� exp�i�nx�sgn��ni���sgn��ni�x�, where we
have omitted the exp��it� factor. The coefficients cn are
given, respectively, by

cn �
Z 1
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g�u�Gn�u�du; (8a)
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2
Gn�u�du: (8b)

An independent way to obtain these solutions is by
solving the initial-value and boundary-value problems
directly using Laplace transforms in time or Fourier
transforms in space. We define ~gg�w; t� �

R
L d�e

�i�t �
~ggL�w;��=2�, where L denotes the inverse Laplace trans-
form path, which for our case can be taken simply as the
real � axis, and ~gg�w; x� �

R
1
�1 d�e

i�x~gg�w; ��=2�. Note
that ~gg�0; t�, or ~gg�0; x� is just the electric field. The inte-
grands in the inverse transforms can be shown to be

~ggL�w;�� �N����1�D�w;���=D��� � N�w;��; (9a)

~gg�w; �� �N����1�D�w; ���=D��� � N�w; ��; (9b)
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(10b)

withN��� 
 N�0;��,N��� 
 N�0; ��. Note that we have
been able to find a closed-form expression for N�w; ��
because in the boundary-value problem we have already
specified the driving electric field to be a % function. In
order to make further analytical progress for the initial-
value problem, we need to impose more specific restric-
tions on ~gg�w�. We assume that it is bounded in w space, it
decays no slower than exp��w2=4� for large w, and it is a
065002-3
smooth function so that it can be represented by a Taylor
series,
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n
: (11)

These assumptions imply that the initial condition g�u� is
bounded in u space by the asymptotic behavior of
exp��u2�. Even with the stated restrictions, Eq. (11) can
represent a very large class of physically interesting ini-
tial conditions. Then Eq. (10a) becomes
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By the properties of the d function, we see that N�w;��
has simple poles that coincide with the LB poles.
However, there are no such poles in ~ggL�w;�� given by
Eq. (9a), since the poles in the two terms cancel each other
exactly. [This can be shown using the expressions in
Eqs. (4a) and (12a).] The same is true for ~gg�w; �� since
the two terms in Eq. (9b) can be combined to give
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In Eq. (12b), the LB poles in the numerator cancel the
poles in the denominator D��� since the locations of the
LB poles do not depend onw. Therefore, the only poles in
the integrands of the inverse transforms are the zeros of
D��� and D���.

We now show that we can evaluate the inverse trans-
forms using the residue theorem by closing the integration
contour in the lower � plane or in the upper (lower) �
plane for positive (negative) x. To do so, we need to
determine the asymptotic behavior of the integrands for
large �, or large �. For the initial-value problem, we can
make use of the identity [16]

d�a; x� � ex
X1
n�0

��x�n

�a� n�n!
!

jaj!1 1

a
�
x

a2
� � � �; (13a)

where the limit jaj ! 1 is valid for finite x if a �

negative integer (corresponding to LB poles in our
case). Using this identity, we obtain 1�D�w;�� !
i�w exp��w2=4�=2�, D��� ! 1, N�w;�� ! i~hh�w� �
exp��w2=4�=�, N��� ! i~hh�0�=�, so that ~ggL�w;�� !
i~hh�w� exp��w2=4�=�, as j�j ! 1. Therefore, because
of the exp��i�t� factor for t > 0, the integration contour
can, indeed, be closed in the lower � plane. For the
boundary-value problem, Eq. (13a) cannot be used di-
rectly since both a and x are large for large �. Fortunately,
there are more specific asymptotic expansions for the
incomplete gamma function in the mathematical litera-
ture [17–19]. One of the relations which is relevant to our
problem is [17]
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where erfc denotes the complementary error function
[16], and a� �2=2�2, y� w=2 as a! 1. Note that
by Stirling’s formula for the gamma function,
��a� ! e�aaa�1=2

�������
2�

p
�1� 1=12a� . . .�, we obtain

x�aex��a� ! exp��x� a�2=2a�
������������
2�=a

p
, as jaj � jxj !

1. Equation (13b) was originally derived for finite real
y and a large positive real a. More general expressions,
valid for the whole complex a plane, are given in [18,19],
and have the same asymptotic behavior as given by
Eq. (13b). From these relations, we conclude that the d
functions in Eqs. (4b), (10b), and (12b) all decay as
O���1�. Equation (13b) is also useful in obtaining the
limiting form of the dispersion relations for the case of a
finite � or � as �! 0. It is easy to verify that D��� !
1� ��1��Z���� and D��� ! 1� ��1� Z�1=��=
��=�2, the Landau-damped solutions, which should be
distinguished from the solutions that correspond to the
LB poles. Therefore, using these asymptotic relations, we
see thatD��� ! 1, ~gg�w; �� ! i�"e�2��

�1=2 exp��w2=4�=
�, as j�j ! 1. Again, because of the exp�i�x� factor, the
integration contour can, indeed, be closed in the upper
(lower) � plane for positive (negative) values of x. Since
the LB poles cancel out, the only residues are the zeros of
D��� and D���. Thus, the inverse transforms can be
integrated out, summing up the contribution from these
residues, to give

~gg�w; t� � �i
X
n

N��n�~ggn�w�
@D��n�=@�

e�i�nt��t�; (14a)
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ei�nxsgn��ni���sgn��ni�x�;

(14b)

where we have used Eqs. (4a) and (4b). So, the solutions
can, indeed, be expressed as a linear superposition of the
eigenfunctions. Using the orthonormality relations, it can
be shown by straightforward but tedious algebra that the
coefficients in Eqs. (14a) and (14b) are given by Eqs. (8a)
and (8b). Therefore, the result from the direct calculation
is just the same as the result obtained by assuming com-
pleteness of the set of eigenfunctions. We have thus shown
that the eigenfunctions for both the initial-value and
boundary-value problems form a complete set.

So far our considerations have been based on a smooth
initial condition, given by Eq. (11). It is now interesting to
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consider a singular initial condition, such as ~gg�w� �
%�w� w1�, with w1 > 0. Then by Eq. (10a), N��� � 0.
The solution in u space is given by

g�u; t� � exp

�
t�2�2 � 1�

2�
� iuw0

1

�
w2

1 � w
02
1

4
�
w0

1 � w1
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�
��t�=

�������
2�

p
;

where w0
1 � ��1��w1� exp��t� � 1�=�. This is an exact

solution to the initial-value problem of Eqs. (1) and (2).
However, it is an unphysical solution since it does not fall
off as exp��u2� for large juj. In the limit of �! 0,
g�u; t� ! exp��iut��t3=6� . . .���t�=

�������
2�

p
. This has

the same decaying factor as the SO solution [9], that is,
g�u; t� / exp��u2 � iut��t3=6�. The conditions under
which a general solution reduces to SO form, as it must,
remains a subject for future investigation.
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